

Potential Source/Media	Potential Receptors	Potential Pathways	Probability	Consequence	Risk and Justification
Source, incura	песергого	explosion of flammable gases			Foundations and utilities will be constructed in/through Made Ground soils (if present). Protection measures, if required, to protect end users would also serve to reduce risks to buildings.
	End users	Direct contact and inhalation of soil derived dust	Unlikely	Minor	Very Low No naturally occurring potential sources which could harm human health have been identified.
Naturally	Soft Landscaping	Root Uptake	Unlikely	Minor	Very Low Gardens and soft landscaping areas are proposed but are unlikely to be affected by naturally occurring aggressive ground conditions. Current vegetation around the site appeared in good condition.
occurring aggressive ground	Adjacent land users	Direct contact	Unlikely	Minor	Very Low No potential sources which could harm human health have been identified.
conditions	Water supply pipes	Direct contact	Unlikely	Minor	Very Low No potential sources which could harm human health have been identified.
	Buildings and infrastructure	Direct contact	Likely	Minor	Low Foundations will be placed within soils which may be an aggressive environment for concrete.

Table3.1 Preliminary Risk Assessment

3.0 SITE INVESTIGATION SCOPE & STRATEGY

3.1 Scope of Works

In summary, the following scope of works for the intrusive investigation was agreed with the Client:

- Construction of 18No. dynamic sampler boreholes to depths of up to 4m bgl, depending on drilling conditions, using a self-propelled track mounted rig.
- Supervision by a UXO engineer during the drilling of the boreholes.
- Installation of 4No. groundwater and ground gas monitoring wells to depths of 3m.
- One ground gas monitoring (spot monitoring) visit.
- Geochemical laboratory testing on soils and water for a suite of commonly occurring brownfield contaminants and asbestos screening
- Waste categorisation testing on soil samples to aid the assessment of likely waste classification of surplus soils.
- Waste Acceptance Criteria (WAC) testing on selected samples representative of soils to be removed from site for disposal as waste.

Where a site has been subject to any form of development, there is the potential for asbestos to be present within the fabric of buildings, entrained within hardstanding layers, as aggregate layers, discrete pockets, localised burial or the like. As such, where testing for asbestos forms part of an assessment, the absence of asbestos in samples should not be presumed to guarantee the absence of asbestos elsewhere within that site.

3.2 Investigation Strategy

Tables 3.1 summarises the strategy of the environmental investigation.

Environmental Area of Concern	Investigation	Position
Made Ground & Near Surface Soils	Exploratory holes located across the site, coupled with sampling and laboratory analysis.	All
Sources of ground gases and vapours	Monitoring standpipes and return ground gas monitoring.	WS01, WS07, WS10 and WS13

Table 3.1 Summary of Environmental Investigation Strategy

Based on the agreed scope of works, it was possible to make an appraisal for each area of environmental concern identified as part of the investigation.

Soil samples were collected and placed into amber jars and cool boxes on site for transit to the office, where they were stored under chilled conditions (<4°C) prior to final transportation in cool boxes to the laboratory by their in-house courier. Both the geotechnical and contamination testing were undertaken by UKAS accredited laboratories. Contamination testing of soil samples was also undertaken in accordance with accredited MCerts protocols. Samples were stored in temperature controlled conditions from sampling until receipt at the laboratory from which time sample preparation and storage was determined by testing requirements and in line with laboratory's protocols.

4.0 ENCOUNTERED CONDITIONS

A factual record of the conditions encountered during the physical investigation of the site is presented in the following sections.

For further details of the encountered ground conditions, reference should be made to the engineer's logs and cross sections presented in Appendix A, the chemical testing results in Appendix B, ground gas monitoring and assessment sheet in Appendix C and CATWASTE assessment in Appendix D.

The physical ground investigation works were undertaken on 8th - 10th September 2020.

Unless stated otherwise, all depths are reported as metres below ground level (m bgl).

4.1 Ground Conditions

British Geological Survey geological mapping indicated the geology of the site to comprise Langley Silt Member overlying London Clay Formation in the extreme western portion of the site. The Langley Silt could potentially be underlain by River Terrace Deposits. There is also likely to be a mantle of Made Ground across the natural strata at the site from previous development phases.

The investigation generally confirmed the anticipated published geology underlying the site albeit the extent of the Langley Silt Member appeared to extend further east than anticipated. In addition, a more granular sequence of soils was encountered at many locations beneath the Langley Silt Member and this has been interpreted as representing the Kempton Park Gravel. A generalised summary of the encountered ground conditions is presented in Table 4.1.

Top (m bgl)	Base (m bgl)	Geology	Position
0.00	0.15 – 0.30	TOPSOIL: Brown silty gravelly sand with frequent brick and concrete and occasional rootlets and tarmacadam. Gravel comprises fine to medium sub-angular to sub-rounded flint and brick.	All (Excluding WS07)
0.15 – 0.30	0.70– 2.15	MADE GROUND: Brown clayey gravelly silty sand with occasional carbonaceous inclusions, brick, chalk and metal, and rare glass. Gravel comprises fine to medium sub-angular to sub-rounded.	All (Excluding WS12)
0.30 – 2.05	0.95-2.40	LANGLEY SILT MEMBER: Orangish brown and brown mottled sandy CLAY with occasional rootlets, rare fine to medium sub-angular to sub-rounded flint gravel.	WS01, WS03, WS04, WS05, WS07, WS08a, WS09, WS11, WS12, WS14, WS17, WS18
0.70- 2.40	1.40 - 2.85	KEMPTON PARK GRAVEL: Light brown and brown mottled clayey fine to medium SAND with rare fine to medium subangular to subrounded flint gravel.	WS01, WS04, WS05, WS07, WS08a, WS10, WS11, WS13, WS15, WS16, WS17, WS18

0.95 – 2.85	3-4+	LONDON CLAY: Brown and grey mottled silty CLAY with occasional calcareous inclusions and roots.	WS01, WS03, WS04, WS05, WS07, WS08a, WS09, WS10, WS11, WS12, WS13, WS15, WS16, WS17,
			WS18

Table 4.1 Summary of Ground Conditions

For further details of the ground conditions encountered, reference should be made to the borehole logs and sections presented in Appendix A.

4.2 Groundwater

Groundwater was encountered within WS05 at 2.85m bgl within the Kempton Park Gravel, during the site investigation.

Monitoring wells were installed within WS01, WS07, WS10 and WS13. During return monitoring visit undertaken on 17th September 2020, water depths were recorded between 2.59m bgl and 2.95m bgl. WS01 was recorded as dry (>2.88m bgl). For the full results, refer to Appendix C.

It should be noted that changes in groundwater levels do occur for a number of reasons, including seasonal effects and variations in drainage. Such fluctuations may only be recorded by the measurement of the groundwater level within a standpipe or piezometer.

4.3 Ground Gases & Vapours

Ground gas monitoring was also undertaken on 17th September 2020 within standpipes installed in WS01, WS07, WS10 and WS13. During the monitoring methane concentrations was recorded at 0.0%. Carbon dioxide concentrations ranged between 0% and 7.5% with oxygen concentrations ranging between 14.9% and 21.7%. Borehole gas flow was recorded as 0.1l/hr. A maximum VOC concentration of 1.6ppm was recorded. Atmospheric pressure was recorded at 1029mb during the duration of the monitoring visit. A summary of the results is shown in Table 4.2. For the full results, refer to Appendix C.

	Methane (%)		Carbon Dioxide (%)		Oxygen (%)		VOC	Max
Location	Min	Max	Min	Max	Min	Max	(ppm)	Steady Flow (I/hr)
WS01	0.0	0.0	0.0	3.6	16.3	21.0	0.1	0.1
WS07	0.0	0.0	0.0	4.3	17.4	21.0	0.2	0.1
WS10	0.0	0.0	0.0	7.5	14.9	21.7	0.1	0.1
WS13	0.0	0.0	0.0	2.2	19.2	21.4	1.6	0.1

Table 4.2 Summary of Ground Gas Results

4.4 Obstructions

A pipe and cables were encountered during excavation of the service inspection pits for WS02, WS08 and WS15 and subsequently the locations were moved to avoid these obstructions. However, WS02 and WS02a refused on brick and concrete at 0.8m bgl. Additionally, a void was encountered in WS06 and the borehole was

abandoned at 2.15m bgl. Due to limited access, WS14 was hand dug to 0.9m bgl and then terminated. All other window sample borehole reached the targeted depths of 3-4m

Based on the previous form of development within the site the presence of artificial obstructions elsewhere on site should not be discounted.

4.5 Geochemical Analysis

In order to assess the general chemical quality of the strata encountered, samples of soils recovered from the exploratory holes were submitted for analysis for a range of potential contaminants selected on the basis of the findings of the desk study and supported by the joint National House Building Council (NHBC), Environment Agency (EA) and Chartered Institute of Environmental Health (CIEH) publication, 'Guidance for the Safe Development of Housing on Land Affected by Contamination' (2008).

Table 4.3 outlines the number of samples scheduled for specific analysis. The full screening suite is a comprehensive suite of common zootoxic and phytotoxic elements based upon determinants listed within the above guidance including total petroleum hydrocarbons and asbestos screens.

Strata	Full Screening Suite	DRO and PRO	WAC Analysis
Topsoil	6	1	-
Made Ground	15	3	4
Langley Silt Member	3	2	-

Table 4.3 Summary of Laboratory Analysis

Three samples of groundwater were obtained during the return monitoring visit on 17th September. Only limited volumes of water could be retrieved from the standpipes in WS10 and WS07 and consequently a reduced suite of analysis excluding TPH CWG and PAH was run on these samples.

Soil and groundwater samples were placed into plastic containers for general inorganic analysis and into amber jars for organic analysis. Samples were stored in temperature controlled conditions from sampling until receipt at the laboratory from which time sample preparation and storage was determined by testing requirements and in line with the laboratory's protocols.

5.0 ENVIRONMENTAL CONSIDERATIONS

A Generic Quantitative Risk Assessment (GQRA) incorporating the results of the ground investigation was undertaken in accordance with CLR11, the findings of which are presented in the following sections.

5.1 Outline Risk Assessment

A number of plausible pollutant linkages were identified by the desk study (ref: GE18530-DSR-SEPT20).

5.2 Soil Contamination vs. End Users

Given the sensitivity of the proposed development, soil samples were submitted to a UKAS accredited laboratory for general chemical screening including common zootoxic and phytotoxic elements and asbestos screening.

The presence of a possible contaminant does not necessarily imply that a site or area is contaminated or that there is any unacceptable risk to human health. A Preliminary Quantitative Risk Assessment has been undertaken in accordance with CLR11, in order to evaluate any unacceptable risks posed to human health with respect to the proposed redevelopment. It should be noted that this assessment is protective of the chronic long-term effects of contaminants, which is also likely to be protective of any possible immediate acute effects.

A quantitative risk assessment has been undertaken by comparing the results of the laboratory chemical testing of shallow soils against Tier 1 screening criteria in the first instance. These criteria comprise the Atkins ATRISK soil screening values (SSVs), the Suitable for Use Levels (S4ULs) published by LQM (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3453. All rights reserved) and the Category 4 Screening Levels (C4SLs) published by DEFRA. Although the C4SLs were released for Part 2A use, the associated policy companion document for the C4SLs indicated that they may also be used for planning. Although the C4SLs represent a marginally higher risk level than the SSACs (low risk rather than minimal risk) it is considered that the risk levels remain very low. Therefore, the final C4SLs are considered to be suitable to assess soils under the planning regime.

Based on the nature of the development i.e. blocks of residential apartments, the laboratory results were compared individually against thresholds for a residential end use without home grown produce (6% SOM). if the development proposals for Phase 1 change to include private gardens, this assessment would need to be reviewed and updated.

The chemical testing undertaken on the samples of Topsoil and Made Ground soils identified exceedances of the SSVs for a residential end use without home grown produce in respect of the levels of Arsenic, Lead, several Polyaromatic Hydrocarbons. Furthermore, locally PCB (congeners) were recorded within the Made Ground soils. No exceedances were identified within the Langley Silt Member. Exceedances are summarised in Table 5.1.

Determinand	Threshold (mg/kg)	Concentration Range (mg/kg)	Number of Exceedances	Fail Location
Arsenic	39.9 ¹	9.7-65.2	2	WS16 &WS17
				WS01, WS02, WS02a,
Lead	200 ²	23.3-2060	20 (Topsoil and Made	WS03, WS04, WS05,
			Ground)	WS06, WS07, WS08,

Determinand	Threshold (mg/kg)	Concentration Range (mg/kg)	Number of Exceedances	Fail Location
				WS08a, WS09, WS10,
				WS11, WS12, WS14,
				WS15, WS16, WS17,
				WS18
Benzo(a)pyrene	5.00 ¹	0.1-8.1	2 (Topsoil and Made Ground)	WS03, WS09
PCB (Total of 7 Congeners)	0.012 ¹	0.03-0.2	1	WS14

derived from ATRISK, Residential without consumption of home-grown vegetables

Table 5.1 Exceedances against individual thresholds

In addition, a single sample submitted for asbestos screens returned a positive identification for 'Amosite (A.I.B) asbestos fibres. The presence of asbestos elsewhere on site within the near surface soils cannot be discounted and should be assessed as part of a watching brief throughout the development.

Given the Lead concentrations within both the Topsoil and Made Ground remedial measures will be required within areas of proposed soft landscaping for the protection of end users.

5.2.1 Preliminary Remedial Recommendations - Soils

Further investigation will be required post demolition of the existing buildings. However, preliminarily based on the chemically and physically unsuitable nature of the Topsoil and Made Ground soils encountered across the site, remediation is recommended to protect end users from soil contamination.

Asbestos has been identified in one of the samples and there remains the potential for asbestos to be present elsewhere in Made Ground soils. Therefore, it is likely that an engineered cover system incorporating a 'deterto-dig' layer will be most suitable in the soft landscaping areas which are not upon any proposed podium slabs.

For communal gardens or areas of soft landscaping it is likely that a total cover system thickness of 400mm be utilised. This should comprise 250mm of certifiably 'clean' Topsoil and subsoil overlying a 150mm thick layer of crushed stone or gravel (to act as a deter to dig layer) sandwiched between two geo-textile membranes. The upper membrane should be specified as high visibility.

Should private garden areas be proposed in this phase then it is most likely that the engineered cover system would be increased to provide a total cover system thickness of 750mm. This is likely to comprise 600mm of certifiably 'clean' Topsoil and subsoil overlying a 150mm thick layer of crushed stone or gravel (to act as a deter to dig layer) sandwiched between two geo-textile membranes. The upper membrane should be specified as high visibility.

It may be necessary to deepen the cover system within the pits excavated for any proposed trees.

It should be noted that a piling mat would also act as a suitable deter-to-dig barrier at the base of the subsoil.

Raised planters could be utilised where there are limited soft landscaped areas proposed on site. Concrete or brick built troughs filled with certifiably 'clean' Topsoil and sub-soil would effectively sever any source-pathway-receptor as the soils within the raised planters would not be in contact with the underlying affected

²derived from C4SL

soils. As such, thicknesses of verifiably 'clean' Topsoil/sub-soil would be dependent on proposed planting/rooting depths.

Certification for both sub-soil and Topsoil should include laboratory analysis for determinands known to pose a risk to human health (i.e. heavy metals, poly-aromatic hydrocarbons [PAHs], total petroleum hydrocarbons [TPH] and asbestos) as well as broadly meeting the requirements of BS3882:2015.

All remedial works should be undertaken in accordance with a regulatory approved Remedial Strategy and Verification Plan (RSVP) with independent validation on completion.

5.3 Soil Contamination vs. Adjacent Land Users

Surrounding land uses were mixed residential and industrial. Concentrations of potentially harmful contaminants were identified as part of the laboratory analyses in the context of the proposed end use. The contaminants identified were elevated concentrations of Lead. The proposed clean cover system to be protective of end users would mean that the risk to adjacent land users would be negligible. In view of the above, no remedial action is considered necessary to protect adjacent land users from soils on site.

This aside, it is recommended that dust suppression techniques, e.g. damping down exposed soils, are employed during the construction phases on site in order to minimise the potential for airborne migration of specific hazards and to manage potential nuisance issues for adjacent land users.

5.4 Soil Contamination vs. Soft Landscaping

British Standard BS3882:2015 *Specification for topsoil and requirements for use* provides assessment criteria for a number of potentially phytotoxic contaminants in terms of new planting.

The results of the chemical analysis for determinants known to pose a potential phytotoxic risk to plant growth are summarised in Table 5.2, together with the respective adopted Generic Assessment Criteria (GAC) for plant growth. The compliance criteria set out in BS3882:2015 are pH dependent and thus the GAC used relate to the pH range measured on samples recovered from the site.

Determinand	Phy	GAC Exceedances			
Determinand	pH <6.0	pH 6.0-7.0	pH >7.0	GAC Exceedances	
Zinc	200	200	300	Yes	
Copper	100	135	200	Yes	
Nickel	60	75	110	No	

Table 5.2 Summary of Plant Phytotoxicity Assessment

The phytotoxicity assessment has identified exceedances of the thresholds for Zinc and Copper. As such, it is considered that remedial measures would be likely to be required to ensure the protection of plant growth within proposed soft landscaped areas in the development. It is considered that the remedial measures that have been preliminarily recommended in areas of soft landscaping for the protection of end users from soil contamination would serve to provide protection to plants from any contamination within the underlying soils. As such, additional remedial measures to protect proposed soft landscaping are unlikely to be necessary.

5.5 Soil Contamination vs. Building Materials

The recommendations with respect to sulphate and buried concrete are outside of the scope of works.

The current guidance on selection of materials for water supply pipes to be laid in contaminated land is contained in UK Water Industry Research's (UKWIR) report reference 10/WM/03/21 (re-issued 2010). However, the guidance is not mandatory and there have been concerns raised by various industry technical associations regarding the document and the methodologies proposed.

In lieu of any further guidance in the first instance the results of this investigation have been compared with the proposed thresholds published in UKWIR Table 3.1. The results of the relevant chemical analyses indicated exceedances of PAH and TPH which would indicate that barrier pipe is likely to be required by the water company for the protection of the drinking water supply infrastructure. Accordingly, it is recommended that the results of this investigation be presented to the water utility company as soon as reasonably practicable in order to confirm the pipe material required.

As a matter of good practice, and to maximise the protection to utilities, it is recommended that clean, granular backfill is used in service runs and that marker tapes are used for all buried services.

5.6 Soil Contamination vs. Surface Water

The site is situated 253m north of the nearest surface water feature on the ground surface (stream/river). Mobile contamination in the form of petroleum hydrocarbons were not recorded within Made Ground soils on the site therefore the risk to surface water is negligible.

5.7 Soil Contamination vs. Groundwater

During the monitoring visit, samples of water were taken from WS07, WS10 and WS13. Due to the depths of the monitoring wells, this is likely to have been perched water. The superficial deposits (Langley Silt Member) and the bedrock geology (London Clay Formation) were both classified as unproductive strata and the site is outside any Source Protection Zone.

In the first instance the results have been compared against the 'The River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) (England and Wales) Directions' (2010). Where thresholds were not available within this publication, the results were then compared against the Water Supply Regulations 'Drinking Water Standards' (2016). The Drinking Water Standards are considered to be highly conservative as they relate to potable water supplies and the point of compliance is the consumer's tap. A summary of results are presented in Table 5.3.

Standard	Determinad	Threshold	Location (µg/l)			
		(μg/l)	WS07	WS10	WS13	
WFD 2010	Benzo(a)pyrene	0.075	n/t	n/t	0.78	
DWS 2016	PAH*	0.1	n/t	n/t	2.88	
n/a (revoked)	TPH**	10	n/t	n/t	319	
	C16 – C21 Aliphatic	300 ⁺	n/t	n/t	17.7	
WHO	C21 – C35 Aliphatic	300⁺	n/t	n/t	134	
VVIIU	C16 – C21 Aromatic	90	n/t	n/t	10.4	
	C21 – C35 Aromatic	90	n/t	n/t	64.5	

^{*} sum of the concentrations of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno(123-cd)pyrene.

Table 5.3 Summary of Laboratory Analysis

^{**} there is currently no prescribed threshold value for TPH; a previous DWS threshold of 10µg/l has since been withdrawn.

The results of the testing indicate slightly elevated concentrations of PAHs. However, given the urban environment and historic surrounding land uses the concentrations recorded are probably background concentrations and are unlikely to require any remedial action. However, this should be reassessed after any post demolition investigations.

5.8 Ground Gases and Vapours

The investigation did not encounter significant putrescible material within the shallow soils encountered on the site but did encounter olfactory evidence of hydrocarbon contamination. Furthermore, it is considered that the cohesive London Clay soils beneath the site would reduce the potential for migration of gases and vapours onto the site from off-site sources, thereby reducing the potential risk to end users of the development.

A ground gas monitoring visit was undertaken on 17th September 2020 within standpipes installed in WS01, WS07, WS10 and WS13. During the monitoring methane concentrations was recorded at 0.0%. Carbon dioxide concentrations ranged between 0% and 7.5% with oxygen concentrations ranging between 14.9% and 21.7%. Borehole gas flow was recorded as 0.1l/hr. A maximum VOC concentration of 1.6ppm was recorded. Atmospheric pressure was recorded at 1029mb during the duration of the monitoring visit. A summary of the results is shown in Table 3.2. For the full results, refer to Appendix E.

On the basis of the gas data collected and the preliminary gas assessment presented in Appendix C, the results preliminarily correspond to Characteristic Situation 1 (BS8485 and CIRIA). It should be noted that carbon dioxide concentrations marginally in excess of 5.0% were recorded, but in the absence of a valid source of ground gas generation and only low measured flows an increase in the Characteristic Situation is not warranted at this stage. In line with best practice additional visits would be required to fully characterise the site.

5.9 Waste Disposal

5.9.1 Reuse of Material

In accordance with CL:AIRE Code of Practice (2011) materials are only considered waste if 'they are discarded, intended to be discarded or required to be discarded by the holder'.

The Code of Practice therefore allows soils to be reused on site where the following criteria are met:

- A risk to the environment, controlled or human health does not result from the reusing the excavated materials;
- The materials are suitable for use (without any further processing) geotechnically and geochemically;
- There is certainty of use; and
- The quantity that is absolutely necessary (and no more) is used.

In order to comply with the Code of Practice, a material management plan that confirms the above criteria are met has to be prepared. The material management plan must be reviewed by a 'Qualified Person' who then issues a declaration to the Environment Agency. Geo-Environmental can provide this service should it be required.

Where materials do not meet the required criteria, it may be possible to treat them under an environmental permit so that they may be re-used on site. In addition, where material is discarded as waste, it may still be possible to reuse the waste on site under a standard rules environmental permit or a U1 waste exemption.

However, strict limits on the volumes that can be reused apply in these cases.

Where materials do not meet the required criteria, it may be possible to treat them under an environmental permit so that they may be re-used on site.

5.9.2 Disposal to Landfill

Under current legislation, where wastes are to be disposed of to landfill they may, depending on their classification, require pre-treatment. Pre-treatment shall comprise a chemical, physical (including sorting), thermal or biological process. The pre-treatment is required to change the characteristics of the waste, reduce its volume, reduce its hazardous nature, and facilitate its handling and enhance its recovery.

Other materials disposed of from site as part of the development of the site may require disposal separately. All materials containing dangerous substances e.g. tar or bitumen, asbestos, mercury, hydrocarbons, PCBs and asbestos are likely to be classified as Hazardous Waste and therefore susceptible to the relevant legislative controls.

5.9.3 Waste Classification

The following information is provided for preliminary guidance purposes, as different facilities or operators may have differing acceptance criteria and Waste Acceptance Criteria (WAC) analysis may be required to confirm the exact classification.

The chemical test results were initially assessed using the Atkins CatWaste tool, which indicated that the Made Ground soils at four locations had potentially hazardous properties based on the lead concentrations.

In addition to the above, four samples of Made Ground soils were submitted to the laboratory for Waste Acceptance Criteria (WAC) testing. The results indicated that the Made Ground soils tested would likely be suitable for disposal at a landfill licenced to accept stable non-reactive hazardous waste on account of elevated pH, Total Organic Carbon and antimony within the leachate.

Natural uncontaminated soil arisings of the Langley Silt Formation, Kempton Park Gravel and London Clay Formation are likely to be classified as 'inert' waste. However, if there is any visual or olfactory evidence of contamination encountered during works, further testing will be required to confirm this assessment.

Notwithstanding the above, confirmation of the above assessments should be sought from the receiving landfill facility.

5.10 Discovery Strategy

Whilst an intrusive investigation has been undertaken on the site, it remains possible that unexpected soil conditions may be encountered during the process of construction.

Examples may include oily pockets within the soil, pockets of cement boarding or fibrous materials within the soil, black ashy materials, soils exhibiting strong odours, brightly coloured materials and former structures or brickwork.

Should previously undiscovered conditions be encountered during construction by the ground workers, this should be reported to the site manager immediately in order that any necessary inspection may be made.

Records should be kept, and samples submitted for analysis where conditions encountered are not as anticipated. The results of any such testing should be sent to the authorities for consultation.

Depending on the type, nature and extent of any such 'discovery', it may be necessary to halt works in that location until such time as the assessment has been completed. This should be reviewed on a 'discovery' specific basis and in conjunction with regulatory consultation.

As a general guide, where such unexpected conditions are encountered the following approach is recommended:

- All discoveries are to be reported to the Site Manager immediately and works at that location are to halt until further notice;
- The Site Manager is to report any such discoveries to the Client and the Environmental Consultant;
- Following notification from the Site Manager, the Environmental Consultant shall discuss the discovery with the Local Authority and if considered necessary, arrange to meet an Officer on site to view the discovery;
- The Environmental Consultant shall attend the site to record the location, extent and nature of the discovery and implement an appropriate sampling and analysis regime, taking due account of the type and nature of the discovery, known and probable land uses in that area of the site;
- Where remedial action is required, regulatory consultation and approval will be sought;
- A record will be produced by the Environmental Consultant and held on site (with copies held by the Environmental Consultant, Client and Local Authority), detailing the discovery, assessment works undertaken, findings thereof, confirmation either of no action required or detailing the remedial action taken and validation thereof.

The process is shown overleaf.

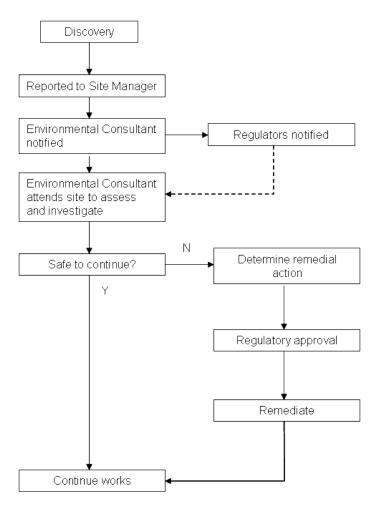


Chart 1 Discovery Strategy Process

A copy of the discovery strategy should be lodged on site, and provisions made to ensure that all workers are made aware of their responsibility to observe, report, and act on any potentially suspicious or contaminated materials they may encounter.

Caveat

The data collected from the investigations have been used to provide an interpretation of the geoenvironmental conditions pertaining to the site. The recommendations and opinions expressed in this report are based on the data obtained.

Geo-Environmental Service Limited takes no responsibility for conditions that either have not been revealed in the available records, or that occurs between or under points of physical investigation. Whilst every effort has been made to interpret the conditions, such information is only indicative and liability cannot be accepted for its accuracy.

Information contained in this report is intended for the use of the client and their agents, and Geo-Environmental Services Limited can take no responsibility for the use of this information by any third party for uses other than that described in this report.

It should be noted that in particular the concentrations and levels of mobile liquid and gaseous materials are likely to vary with time. The results obtained may therefore only be representative of the conditions at the time of sampling. Such reservations have been indicated in the text where such conditions are considered to apply.

Geo-Environmental Services Limited does not indemnify any third parties such as the vendor against any dispute or claim arising from any finding or result of this investigation or any claim or dispute arising as a result of any decisions made thereof.

FIGURES

Project Title: Phase 1 Cambridge Road Title: Figure 1 - Site Location Plan

Location : **Cambridge Road, Kingston upon Thames**

Project No.: GE18530

Cambridge Road (RBK) LLP Client :

Legend Key

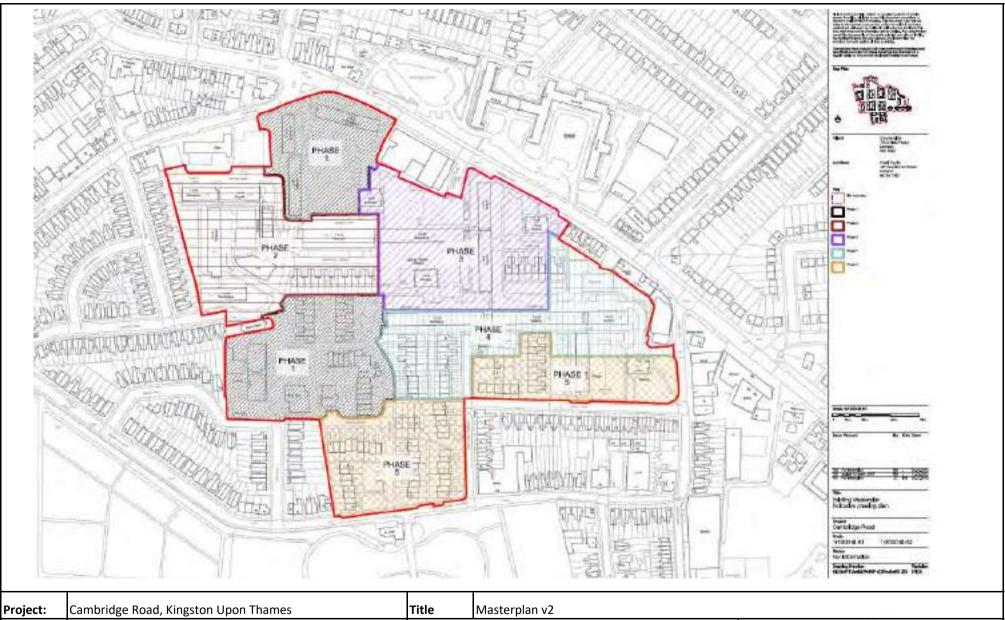
Project Bounds - Project Bounds

Project Title: Phase 1 Cambridge Road Title: Figure 2 - Exploratory Hole Location Plan

Location: Cambridge Road, Kingston upon Thames Scale: 1:2000

Project No.: GE18530 Engineer: JT

Client: Cambridge Road (RBK) LLP



Locations By Type - IP

Locations By Type - WLS

Project:	Cambridge Road,	Title	Masterplan v		
Client:	Cambridge Road (Cambridge Road (RBK) LLP			
Ref No:	GE18350	Revision:	v1		Unit 7 Danwo
Drawn:	КВ	Date:	28/10/2020		Hurstpierpoir
Figure:	3	Scale:	Not To Scale		+44(0)1273

Geo-Environmental Services Ltd

Unit 7 Danworth Farm, Cuckfield Road

Hurstpierpoint, West Sussex BN6 9GL

+44(0)1273 832972 www.gesl.net

APPENDIX A

Exploratory Hole Logs and Cross Sections

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS01** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type 519148E - 169036N Phase 1 Cambridge Road Co-ords: Project Name: GE18530 WLS Scale Cambridge Road, Kingston upon Thames Location: Level: 12 59 1:25 Logged By 08/09/2020 Client: Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) (m) Strikes Depth (m) Results Type Brown silty gravelly sand with frequent brick and concrete and occasional rootlets and tarmacadam. **TOPSOIL** 0.50 ES 0.70 11.88 Brown silty gravelly clay with frequent brick, concrete, 0.80 ES and carbonaceous inclusions. 1.50 ES 1.70 10.88 Orangish brown and brown mottled sandy CLAY with occasional rootlets. LANGLEY SILT MEMBER . Rare roots (4mm) at 1.9m bgl. 4.0kg/cm2 HVP=74 PP 2.00 2 2.00 3.5kg/cm2 HVP=84 PP 2.30 2.30 2.50 10.09 Light brown and brown mottled clayey fine to medium SAND with rare fine to medium sub-angular to subrounded flint gravel. KEMPTON PARK GRAVEL 2.85 9.74 Brown and grey mottled silty CLAY with occasional calcareous inclusions. 3.00 PP 3.2kg/cm2 3.00 9.59 3 3.00 HVP=82 End of Borehole at 3.00m Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Remarks

Unit 7, Danworth Farm Borehole No. Hurstpierpoint **Borehole Log WS02** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 519165E - 168959N Phase 1 Cambridge Road Project Name: GE18530 WLS Scale Location: Cambridge Road, Kingston upon Thames Level: 13.68 1:25 Logged By Client: Dates: 08/09/2020 Cambridge Road (RBK) LLP JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Type Results Brown and light greyish brown gravelly silty sand with occasional rootlets and roots (1-2mm). Gravel 0.15 ES comprises fine to medium sub-angular to sub-rounded flint and brick. 0.60 13.08 Brick and concrete. MADE GROUND 0.80 12.88 End of Borehole at 0.80m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Black pipe (40mm) at 0.60m bgl. Hand pit refused on brick and concrete at 0.80m bgl.

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log** WS02a BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type 519166E - 168959N Phase 1 Cambridge Road Co-ords: Project Name: GE18530 WLS Scale Cambridge Road, Kingston upon Thames 13.62 Location: Level: 1:25 Logged By 08/09/2020 Client: Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Brown gravelly silty sand with frequent rootlets and occasional brick. Gravel comprises fine to medium sub-angular to sub-rounded flint. MADE GROUND 0.20 13.42 Brown gravelly silty sand with occasional carbonaceous inclusions, brick, chalk and metal, and rare glass. Gravel comprises fine to medium sub-0.50 ES angular to sub-rounded flint. MADE GROUND 0.70 12.92 Concrete (intact) MADE GROUND 0.80 12.82 End of Borehole at 0.80m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Refused on concrete at 0.80mbgl.

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS03** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type 519115E - 168953N Phase 1 Cambridge Road Co-ords: Project Name: GE18530 WLS Scale Cambridge Road, Kingston upon Thames 12.61 Location: Level: 1:25 Logged By 08/09/2020 Client: Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Results Type Dark brown gravelly sandy silt with frequent rootlets. Gravel comprises fine to medium sub-angular to sub-0.15 ES rounded flint. TOPSOIL 0.25 12.36 Brown and dark brown gravelly silty sand with abundant brick and concrete. MADE GROUND 0.60 ES 0.80 11.81 Brown and orangish brown mottled sandy CLAY with rare fine to medium sub-angular to sub-rounded flint PP 2.0kg/cm2 1.00 **LANGLEY SILT MEMBER** 11.46 1.15 Brown and grey mottled silty CLAY with occasional calcareous inclusions. LONDON CLAY PP 1.50 2.5kg/cm2 Rare root (1mm) at 1.50m bgl. 1.50 PP 2.0kg/cm2 HVP=70 2.00 2.00 2.5kg/cm2 HVP=77 PP 2.50 2.50 3.00 3.00 PP 2.2kg/cm2 9.61 End of Borehole at 3.00m 3.00 HVP=74 Water Strikes (mbgl) Depth Strike Rose to Chiselling (mbgl) Casing Diameter Depth (m) Remarks

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS04** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Phase 1 Cambridge Road 519096E - 168980N Co-ords: Project Name: GE18530 WLS Scale 12.04 Location: Cambridge Road, Kingston upon Thames Level: 1:25 Logged By Client: Cambridge Road (RBK) LLP Dates: 08/09/2020 JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) (m) Strikes Depth (m) Results Type Brown sandy silt with frequent rootlets and occasional 0.20 11.84 Brown clayey sand with abundant brick and occasional carbonaceous inclusions. MADE GROUND 0.50 ES 0.70 11.34 Reworked brown clayey sand with rare carbonaceous MADE GROUND ES 1.00 1.10 10.94 Brown, dark orangish brown and grey mottled sandy ES 1.20 LANGLEY SILT MEMBER 1.40 10.64 Orangish brown and grey mottled sandy CLAY. LANGLEY SILT MEMBER 1.50 PP 2.8kg/cm2 1.50 1.75 10.29 Orangish brown clayey fine to medium SAND with rare fine to medium sub-angular to sub-rounded flint KEMPTON PARK GRAVEL PP 1.0kg/cm2 HVP=22 2.00 2 2.00 2 10 9.94 Brown and grey mottled sandy silty CLAY with occasional calcareous inclusions. LONDON CLAY 3.0kg/cm2 HVP=92 PP 2.50 2.50 3.00 PP 2.5kg/cm2 3.00 9.04 End of Borehole at 3.00m 3.00 HVP=78 Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Remarks

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS05** BN6 9GL Geo-Environmentalwww.gesl.net Sheet 1 of 1 Project No. Hole Type Phase 1 Cambridge Road Co-ords: 519066E - 168988N Project Name: GE18530 WLS Scale Location: Cambridge Road, Kingston upon Thames Level: 11 43 1:25 Logged By Client: Cambridge Road (RBK) LLP Dates: 08/09/2020 JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Results Depth (m) Type Orangish brown clayey silty sand with frequent 0.15 ES TOPSOIL 0.20 11.23 Brown clayey silty gravelly sand with occasional rootlets. Gravel comprises fine to medium sub-angular to sub-rounded flint and occasional brick. 0.60 ES 0.80 10.63 Brown and orangish brown mottled gravelly sandy CLAY with occasional carbonaceous specks. Gravel comprises fine to medium sub-angular to sub-rounded LANGLEY SILT MEMBER 1.50 ES 1.55 9.88 Brown and orangish brown mottled sandy CLAY. 1.60 2.8kg/cm2 1.60 LANGLEY SILT MEMBER 9.68 1.75 Brown and light orangish brown mottled clayey fine to medium SAND. KEMPTON PARK GRAVEL Rare roots (1-2mm) between 1.75m and 2 .20<u>mbgl</u>. 2 10 9.33 Brown, orangish brown and grey mottled silty CLAY with occasional calcareous inclusions KEMPTON PARK GRAVEL PP 2.5kg/cm2 HVP=74 2.50 2 50 3.00 PP 2.5kg/cm2 3 3.05 8.38 3.00 HVP=71 Brown flint GRAVEL. Gravel comprises medium to coarse sub-angular to sub-rounded flint. KEMPTON PARK GRAVEL 3.40 8.03 Brown and grey mottled silty CLAY. LONDON CLAY 3.50 2.8kg/cm2 3.50 HVP=71 PP 4.00 7.43 2.5kg/cm2 4.00 End of Borehole at 4.00m Water Strikes (mbgl) Chiselling (mbgl) Casing Diameter Depth (m) Depth Strike Backfilled with arisings on completion. 2.90 2.90

Unit 7, Danworth Farm Borehole No. Hurstpierpoint **Borehole Log WS06** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 519071E - 168950N Phase 1 Cambridge Road Project Name: GE18530 WLS Scale Location: Cambridge Road, Kingston upon Thames Level: 11.58 1:25 Logged By Client: 09/09/2020 Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Brown silty sand with frequent rootlets and rare brick. 0.15 ES 0.30 11.28 Brown and orangish brown mottled sandy clay with occasional brick and tarmacadam, and rare flint gravel. MADE GROUND 0.50 ES ES 1.50 1.60 9.98 Orangish brown and brown sandy CLAY MADE GROUND 1.80 9.78 Void. Dry. Concrete base. MADE GROUND 2.15 9.43 End of Borehole at 2.15m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Void encountered between 1.80m and 2.15m. Hole abandoned.

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS07** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Phase 1 Cambridge Road 519031E - 169013N Co-ords: Project Name: GE18530 WLS Scale Location: Cambridge Road, Kingston upon Thames I evel: 10.84 1:25 Logged By Client: Cambridge Road (RBK) LLP Dates: 09/09/2020 JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Results Type Concrete. 0.10 10.74 MADE GROUND Light brown gravelly sand with abundant brick. MADE GROUND 0.25 10.58 Dark brown and brown silty gravelly sandy clay with occasional roots (1-2mm). Gravel comprises fine to medium sub-angular to sub-rounded flint and rare 0.50 ES brick. MADE GROUND 0.85 9.98 Greyish brown and dark orangish brown mottled clayey gravelly fine to medium SAND. Gravel 1.00 ES comprises fine to medium sub-angular to sub-rounded LANGLEY SILT MEMBER 1.40 9.44 Orangish brown silty gravelly fine to medium SAND. Gravel comprises fine to medium sub-angular to subrounded flint. KEMPTON PARK GRAVEL Occasional roots (1-2mm) at 1.50m bgl. 2 8.68 2.15 Brown and grey mottled silty CLAY with frequent rootlets, roots (1-2mm), occasional calcareous inclusions LONDON CLAY 2.2kg/cm2 HVP=62 PP 2.50 2.50 3.00 PP 2.5kg/cm2 3.00 7.84 End of Borehole at 3.00m 3.00 HVP=78 Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Remarks

Unit 7, Danworth Farm Borehole No. Hurstpierpoint **Borehole Log WS08** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 519045E - 169052N Project Name: Phase 1 Cambridge Road GE18530 WLS Scale Location: Cambridge Road, Kingston upon Thames Level: 10.51 1:25 Logged By Dates: Client: 09/09/2020 Cambridge Road (RBK) LLP JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Brown gravelly silty sand with frequent rootlets and brick, and rare carbonaceous inclusions. Gravel comprises fine to medium sub-angular to sub-rounded TOPSOIL 0.40 ES 0.80 9.71 End of Borehole at 0.80m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Hole moved due to yellow pipe encountered at base of hand pit.

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log** WS08a BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type 519041E - 169053N Phase 1 Cambridge Road Co-ords: Project Name: GE18530 WLS Scale Cambridge Road, Kingston upon Thames Location: I evel: 10.34 1:25 Logged By Client: Cambridge Road (RBK) LLP Dates: 09/09/2020 JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Results Type Brown silty sand with frequent rootlets and occasional flint gravel and carbonaceous inclusions. TOPSOIL 0.50 9.84 Brown silty sand with frequent rootlets and occasional flint gravel and brick. MADE GROUND 0.70 ES 0.85 Orangish brown sandy gravelly CLAY. Gravel comprises fine to medium sub-angular to sub-rounded 1.00 3.2kg/cm2 LANGLEY SILT MEMBER 1.25 9.09 Light brown and orangish brown mottled silty fine to medium SAND with rare fine to medium sub-angular to sub-rounded flint gravel. KEMPTON PARK GRAVEL 1.55 8.79 Brown and grey mottled silty CLAY with occasional PP 1.60 2.0kg/cm2 calcareous inclusions. 1.60 PP 3.0kg/cm2 HVP=120 2.00 2.00 2.2kg/cm2 HVP=78 PP 2.50 2.50 3.00 PP 2.5kg/cm2 3.00 7.34 End of Borehole at 3.00m 3.00 HVP=77 Water Strikes (mbgl) Depth Strike Rose to Chiselling (mbgl) Casing Diameter Depth (m) Remarks

Unit 7, Danworth Farm Borehole No. **Borehole Log** Hurstpierpoint **WS09** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type 519103E - 169031N Phase 1 Cambridge Road Co-ords: Project Name: GE18530 WLS Scale Cambridge Road, Kingston upon Thames Location: I evel: 11 12 1:25 Logged By 08/09/2020 Client: Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Results Type Dark brown sandy silt with frequent rootlets. 0.20 ES 0.35 10.77 Brown clayey silty sand with rare brick. 0.60 ES 0.95 10.17 Orangish brown and light greyish brown mottled sandy CLAY with rare fine to medium sub-angular to sub-1.00 ES rounded flint gravel. 3.0kg/cm2 LANGLEY SILT MEMBER 1.20 1.45 9.67 Brown and grey mottled sandy silty CLAY with 1.50 2.2kg/cm2 occasional calcareous inclusions and ferruginous 1.50 HVP=56 inclusions LONDON CLAY PP 2.8kg/cm2 HVP=82 2.00 2 2.00 2.8kg/cm2 HVP=78 PP 2.50 2.50 3.00 PP 2.8kg/cm2 3 3.00 HVP=86 2.0kg/cm2 HVP=74 3.50 2.5kg/cm2 HVP=66 PP 4.00 7.12 4.00 End of Borehole at 4.00m Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Remarks

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS10** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Phase 1 Cambridge Road 519090E - 169214N Co-ords: Project Name: GE18530 WLS Scale Location: Cambridge Road, Kingston upon Thames Level: 11 52 1:25 Logged By Client: Cambridge Road (RBK) LLP Dates: 09/09/2020 JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) (m) Strikes Depth (m) Results Type Brown silty sand with frequent rootlets, occasional 0.15 ES **TOPSOIL** 0.25 11.27 Brown silty gravelly sand with abundant brick. MADE GROUND 1.00 ES 1.45 10.07 Brown gravelly sandy clay with frequent carbonaceous inclusions, occasional brick and rare glass. MADE GROUND 1 80 FS .. Rare roots (1-3mm) at 1.90m bgl. 2.05 9 47 Orangish brown and grey mottled gravelly sandy CLAY. Gravel comprises fine to medium sub-angular to sub-rounded flint. KEMPTON PARK GRAVEL 2.40 9.12 Brown and grey mottled clayey fine to medium SAND with rare fine to medium sub-angular to sub-rounded KEMPTON PARK GRAVEL 2.75 8.77 Brown and grey mottled silty CLAY with frequent roots (1-4mm) to 2.90m bgl, and occasional calcareous LONDON CLAY 3.00 PP 2.8kg/cm2 3.00 HVP=74 3.50 2.5kg/cm2 HVP=68 2.5kg/cm2 PP 4.00 7.52 4.00 End of Borehole at 4.00m Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Remarks

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS11** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type 519089E - 169186N Phase 1 Cambridge Road Co-ords: Project Name: GE18530 WLS Scale Cambridge Road, Kingston upon Thames 10.49 Location: Level: 1:25 Logged By 09/09/2020 Client: Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Results Type Brown silty sand with frequent rootlets. ES 0.10 0.25 10.24 Brown silty sand with abundant concrete, plastic and metal, and occasional ceramic and glass. MADE GROUND 0.60 ES 0.80 9.69 Light orangish brown and greyish brown mottled sandy CLAY with occasional roots (1mm). LANGLEY SILT MEMBER PP 2.2kg/cm2 1.00 1.05 9.44 Brown and dark orangish brown mottled clayey gravelly fine to medium SAND. Gravel comprises fine to medium sub-angular to sub-rounded flint. KEMPTON PARK GRAVEL 1.65 8.84 Brown and grey mottled silty CLAY with occasional calcareous inclusions. PP 2.8kg/cm2 HVP=82 2.00 2.00 2.2kg/cm2 HVP=66 PP 2.50 2.50 3.00 PP 2.0kg/cm2 3.00 7.49 End of Borehole at 3.00m 3.00 HVP=82 Water Strikes (mbgl) Depth Strike Rose to Chiselling (mbgl) Casing Diameter Depth (m) Remarks

Unit 7, Danworth Farm Borehole No. **Borehole Log** Hurstpierpoint **WS12** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type 519093E - 169153N Phase 1 Cambridge Road Co-ords: Project Name: GE18530 WLS Scale Cambridge Road, Kingston upon Thames 9.88 Location: Level: 1:25 Logged By 09/09/2020 Client: Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Results Type Brown silty sand with frequent rootlets. TOPSOIL 0.15 ES 0.30 9.58 Orangish brown and grey mottled clayey gravelly fine to medium SAND with frequent roots (1-50mm). Gravel comprises fine to medium sub-angular to sub-0.50 ES rounded flint. LANGLEY SILT MEMBER 0.95 8.93 Brown and grey mottled silty CLAY with occasional calcareous inclusions and roots (1-2mm) to 1.0m. PP 2.0kg/cm2 1.00 LONDON CLAY PP 1.50 2.2kg/cm2 1.50 HVP=74 PP 2.2kg/cm2 HVP=72 2.00 2.00 2.0kg/cm2 HVP=74 2.50 PP 2.50 3.00 3.00 PP 3.2kg/cm2 6.88 End of Borehole at 3.00m 3.00 HVP=98 Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Remarks

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS13** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Phase 1 Cambridge Road 519119E - 169136N Co-ords: Project Name: GE18530 WLS Scale 10.36 Location: Cambridge Road, Kingston upon Thames Level: 1:25 Logged By Client: Cambridge Road (RBK) LLP Dates: 10/09/2020 JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) (m) Strikes Depth (m) Results Type Brown silty sand with frequent rootlets and occasional flint gravel ceramic. 0.15 ES TOPSOIL 0.50 9.86 Reworked orangish brown and brown mottled clayey sand with occasional flint cobbles and roots (1-2mm). MADE GROUND 0.70 ES 0.80 9.56 Orangish brown clayey gravelly fine to medium SAND. Gravel comprises fine to medium sub-angular to sub-KEMPTON PARK GRAVEL 1.40 8.96 Brown and grey mottled silty CLAY with occasional calcareous inclusions and roots (1-2mm) to 2.00m bgl. 1.50 PP 1.8kg/cm2 1.50 LONDON CLAY PP 2.2kg/cm2 HVP=83 2.00 2 2.00 2.2kg/cm2 HVP=70 PP 2.50 2.50 .. Rare roots (1mm) at 2.90m bgl. 3.00 PP 2.8kg/cm2 3 3.00 HVP=90 Occasional selenite crystals at 3.30m bgl. 3.40 6.96 Brown silty CLAY with occasional selenite crystals. LONDON CLAY 3.50 2.5kg/cm2 HVP=76 3.2kg/cm2 HVP=104 PP 4.00 6.36 4.00 End of Borehole at 4.00m Water Strikes (mbgl) Depth Strike Rose to Chiselling (mbgl) Remarks Diameter Depth (m)

								Trialpit No
Geo-Fn	vironmental				Trial Pit Log			WS14
					1 8 1		0 1 540450 40 400450 05	Sheet 1 of 1
Project Name:	t Phase 1	Cambri	dge Road	Project GE18			Co-ords: 519152.13 - 169158.35 Level: 12.52	Date 10/09/2020
			330		Level: 12.52 Dimensions	Scale		
Locatio	on: Cambrid	ge Road	d, Kingston upon Th	ames			(m):	1:10
Client:	Cambrid	ge Roa	d (RBK) LLP				Depth 0.90	Logged JK
e e	Sample	s and I	n Situ Testing	Depth	Level		0, 1, 5, 1,1	ı
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	d Stratum Description	
	0.20	ES		0.30	12.22		Brown silty sand with frequent rootlets and occ roots (1-3mm) and int gravel. TOPSOIL	
	0.50	ES		0.50	12.22		Brown gravelly silty sand with frequent concret brick, occasional polystyrene and plastic, yellow inclusions, and rare fibrous board (asbestos?). MADE GROUND	w sand
	0.80	ES		0.70	11.82		Light brown clayey silty fine to medium SAND. LANGLEY SILT MEMBER	-
				0.90	11.62		End of pit at 0.90 m	
								1 -
								-
								_
								_
								-
								-
								-

Remarks: WS not possible due to access.

Stability:

Unit 7, Danworth Farm Borehole No. **Borehole Log** Hurstpierpoint **WS15** BN6 9GL Geo-Environmentalwww.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 519127E - 169172N Phase 1 Cambridge Road Project Name: GE18530 WLS Scale Location: Cambridge Road, Kingston upon Thames 11.61 Level: 1:25 Logged By 09/09/2020 Client: Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Stratum Description Well Legend Strikes (m) (m) Depth (m) Results Type Brown silty sand with frequent rootlets. ES 0.10 0.20 11.41 Brown gravelly clayey sand with abundant blocks, concrete and tarmacadam. MADE GROUND 0.70 ES 1.40 10.21 Reworked brown and dark brown mottled clayey sand 1.50 ES with rare carbonaceous inclusions. MADE GROUND 1.80 9.81 Orangish brown and brown mottled clayey fine to medium SAND. KEMPTON PARK GRAVEL 2.60 9.01 Brown and grey mottled silty CLAY with occasional LONDON CLAY 3.00 PP 3.0kg/cm2 3.00 8.61 End of Borehole at 3.00m 3.00 HVP=83 Water Strikes (mbgl) Depth Strike Rose to Chiselling (mbgl) Casing Diameter Depth (m) Black cable encountered at 0.85m bgl. Hand pit extended and WS continued.

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS16** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type 519123E - 169186N Phase 1 Cambridge Road Co-ords: Project Name: GE18530 WLS Scale Cambridge Road, Kingston upon Thames Location: I evel: 11 91 1:25 Logged By 09/09/2020 Client: Cambridge Road (RBK) LLP Dates: JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Type Results Light brown silty sand with frequent rootlets and flint gravel. TOPSOIL 0.20 ES 0.30 11.60 Dark greyish brown silty gravelly sand with occasional concrete, brick and metal. MADE GROUND 0.50 ES 1.10 10.80 Brown and dark brown mottled sandy clay with abundant carbonaceous inclusions and occasional MADE GROUND 1.50 ES 2.10 9.80 Orangish brown and grey mottled gravelly fine to medium SAND. Gravel comprises fine to medium subangular to sub-rounded flint. KEMPTON PARK GRAVEL 2.85 9.06 Brown and grey mottled silty CLAY. LONDON CLAY 3.00 PP 2.5kg/cm2 3.00 8.90 End of Borehole at 3.00m 3.00 HVP=96 Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Remarks

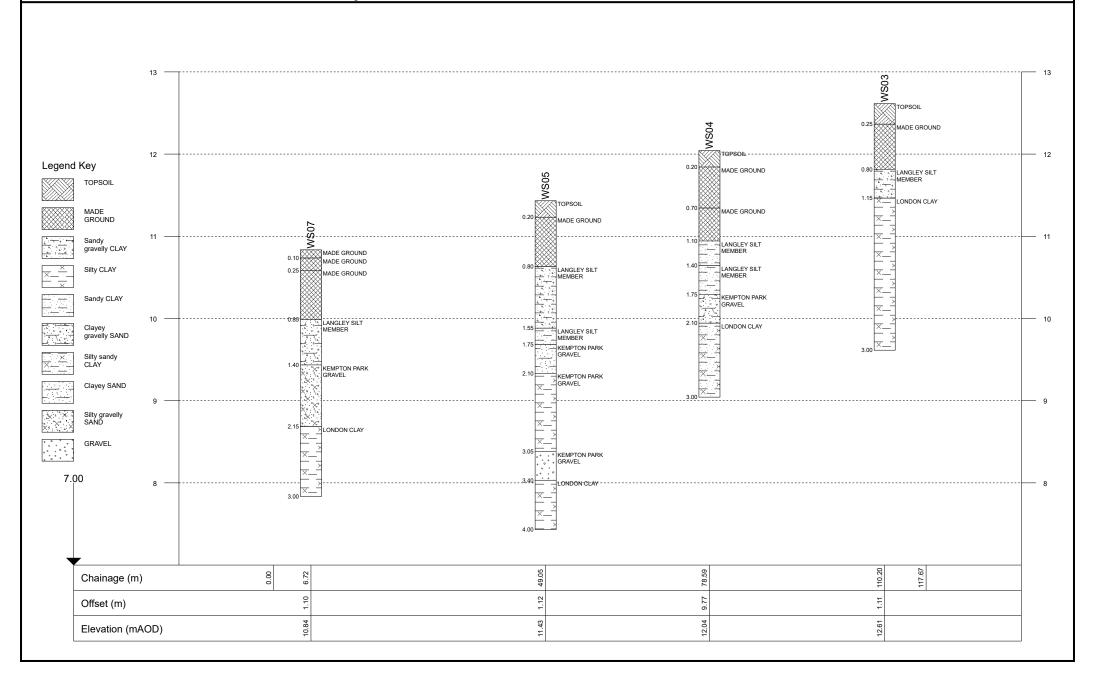
Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS17** BN6 9GL Geo-Environmentalwww.gesl.net Sheet 1 of 1 Project No. Hole Type Phase 1 Cambridge Road Co-ords: 519113E - 169169N Project Name: GE18530 WLS Scale 10.87 Location: Cambridge Road, Kingston upon Thames Level: 1:25 Logged By Client: Cambridge Road (RBK) LLP Dates: 10/09/2020 JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Results Type Brown silty sand with frequent rootlets and occasional 0.10 ES 0.15 10.72 TOPSOIL Brown and dark brown gravelly silty sand with frequent brick, concrete and ceramic pipe, and rare 0.40 ES **MADE GROUND** 0.75 Brown silty sand with occasional brick and flint gravel. 0.85 ES MADE GROUND 0.95 9.92 Brown and orangish brown mottled gravelly clayey fine to medium SAND. Gravel comprises fine to medium sub-angular to sub-rounded flint. LANGLEY SILT MEMBER 9.42 1.45 Orangish brown and brown mottled clayey sandy GRAVEL. Gravel comprises fine to medium sub-angular to sub-rounded flint. KEMPTON PARK GRAVEL 1.75 9.12 Dark grey and brown mottled clayey gravelly fine to medium SAND with a slight organic odour. KEMPTON PARK GRAVEL 1.95 8.92 PP Light orange and grey mottled sandy CLAY. 2.00 1.8kg/cm2 2 2.00 KĚMPTOŇ PARK GŔAVEL 2.30 8.57 Brown and grey mottled silty CLAY with occasional roots (1-3mm) to 3.30m bgl. LONDON CLÁY PP 2.50 1.8kg/cm2 2 50 HVP=70 3.00 PP 2.0kg/cm2 3 3.00 HVP=62 3.50 1.8kg/cm2 HVP=68 2.8kg/cm2 PP 4.00 6.87 4.00 End of Borehole at 4.00m Water Strikes (mbgl) Depth Strike Rose to Chiselling (mbgl) Diameter Depth (m) Collapsed to 2.85m bgl.

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS18** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Phase 1 Cambridge Road 519119E - 169156N Co-ords: Project Name: GE18530 WLS Scale 10.80 Location: Cambridge Road, Kingston upon Thames Level: 1:25 Logged By Client: Cambridge Road (RBK) LLP Dates: 10/09/2020 JK Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) (m) Strikes Depth (m) Results Type Brown silty sand with frequent rootlets and occasional TOPSOIL 0.25 10.55 Brown silty sand with frequent brick and occasional 0.35 ES carbonaceous inclusions and flint gravel. MADE GROUND 0.50 10.30 Brown silty clayey sand with occasional brick and carbonaceous inclusions. MADE GROUND 0.70 ES 0.90 9.90 Brown sandy gravelly CLAY. Gravel comprises fine to medium sub-angular to sub-rounded flint. LANGLEY SILT MEMBER 1.25 9.55 Brown slightly clayey fine to medium SAND with rare fine to medium sub-angular to sub-rounded flint KEMPTON PARK GRAVEL 1.75 9.05 Brown and grey mottled silty CLAY with occasional calcareous inclusions and roots (1-3mm) to 1.90m bgl. LONDON CLAY 3.0kg/cm2 HVP=83 PP 2.00 2.00 2.0kg/cm2 HVP=70 PP 2.50 2.50 3.00 PP 2.0kg/cm2 3.00 7.80 End of Borehole at 3.00m 3.00 HVP=84 Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Collapsed to 2.70mbgl.

Project Id: GE18530

Project Title: Phase 1 Cambridge Road

Location: Cambridge Road, Kingston upon Thames


Client: Cambridge Road (RBK) LLP

Title: Section line 1

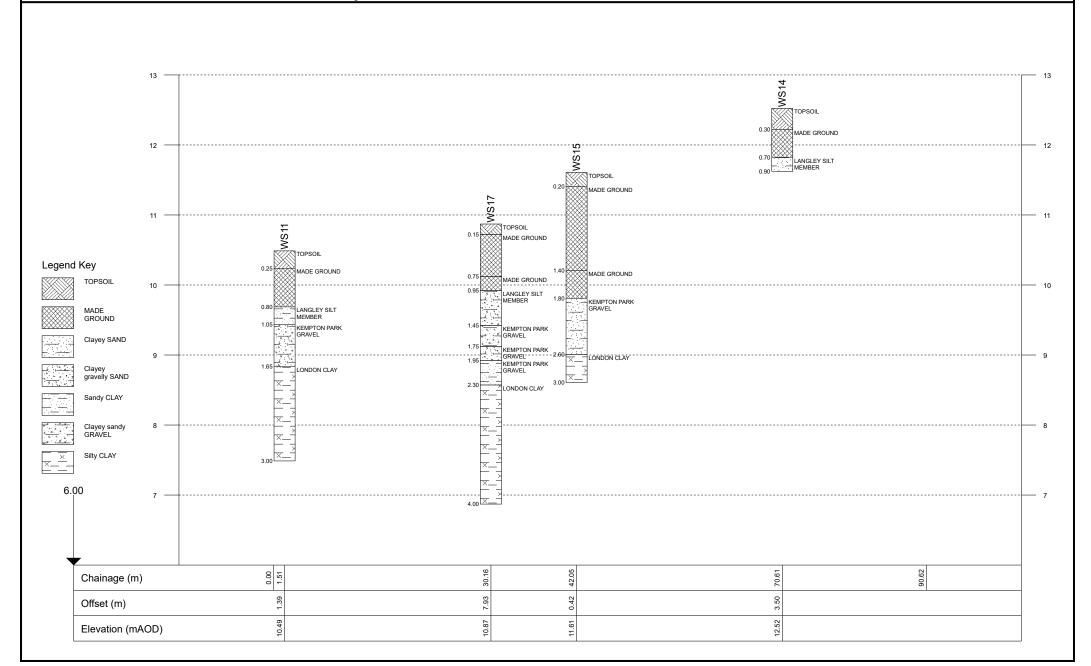
Vertical Scale: 1:46 Horizontal Scale: 1:682

Engineer: JT

Project Id: GE18530

Project Title: Phase 1 Cambridge Road

Location: Cambridge Road, Kingston upon Thames

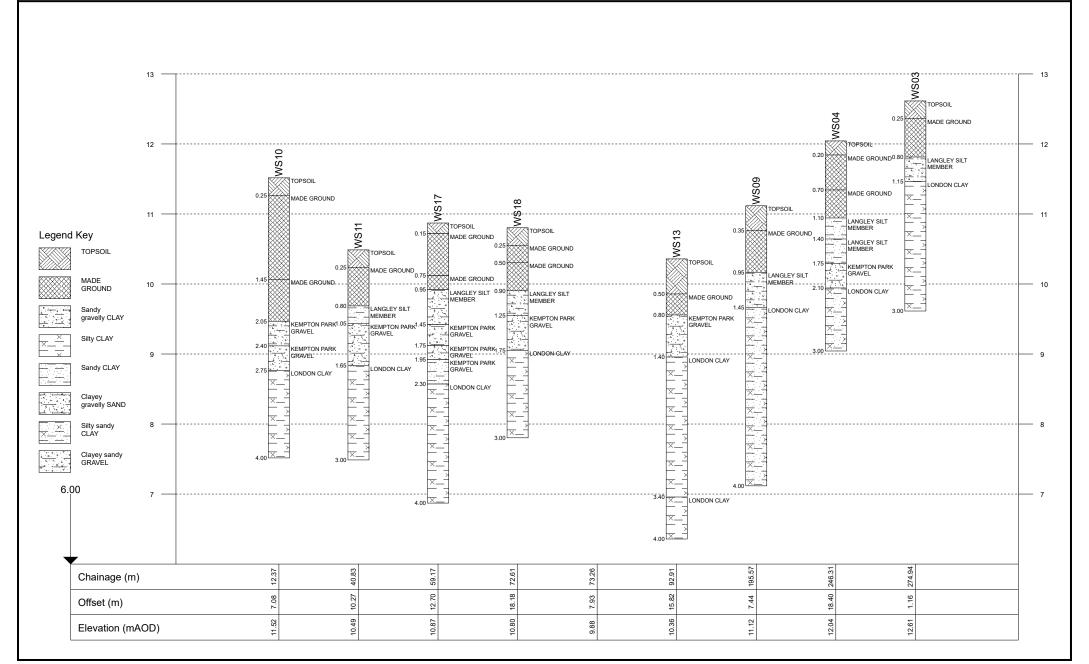

Client: Cambridge Road (RBK) LLP

Title: Section line 2 Vertical Scale: 1:54

Horizontal Scale: 1:525

Engineer: JT

Project Id: GE18530


Project Title: Phase 1 Cambridge Road

Location: Cambridge Road, Kingston upon Thames Client: Cambridge Road (RBK) LLP Title: Section line 3 Vertical Scale: 1:54

Horizontal Scale: Not to scale

Engineer: JT

APPENDIX B

Geochemical Laboratory Test Results

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618

cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 20-29855

Issue: 1

Date of Issue: 22/09/2020

Contact: Katie Brayne

Customer Details: GESL

Unit 7

Danworth Farm Hurstpierpoint

West SussexBN6 9GL

Quotation No: Q19-01488

Order No: 3006

Customer Reference: GE18530

Date Received: 10/09/2020

Date Approved: 22/09/2020

Details: Phase 1 Cambridge Road

Approved by:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
213955	WS01 1 0.50	08/09/2020	15/09/2020		
213956	WS01 2 0.80	08/09/2020	15/09/2020	Silty clayey loam	
213957	WS01 3 1.50	08/09/2020	15/09/2020		
213958	WS02 1 0.15	08/09/2020	15/09/2020	Silty loam	
213959	WS02a 1 0.50	08/09/2020	15/09/2020	Silty loam	
213960	WS03 1 0.15	08/09/2020	15/09/2020		
213961	WS03 2 0.60	08/09/2020	15/09/2020	Silty loam	
213962	WS04 1 0.50	08/09/2020	15/09/2020	Sandy silty loam	
213963	WS04 21.00	08/09/2020	15/09/2020		
213964	WS04 3 1.20	08/09/2020	15/09/2020		
213965	WS05 1 0.15	08/09/2020	15/09/2020		
213966	WS05 2 0.60	08/09/2020	15/09/2020	Silty loam	
213967	WS05 3 1.50	08/09/2020	15/09/2020	Silty loam	
213968	WS06 1 0.15	08/09/2020	15/09/2020	Silty loam	
213969	WS06 2 0.50	09/09/2020	15/09/2020	Silty clayey loam	
213970	WS06 3 1.50	09/09/2020	15/09/2020		
213971	WS07 1 0.50	09/09/2020	15/09/2020	Sandy silty loam	
213972	WS07 21.00	09/09/2020	15/09/2020		
213973	WS08 1 0.40	09/09/2020	15/09/2020	Silty loam	
213974	WS08a 1 0.70	09/09/2020	15/09/2020	Silty loam	
213975	WS08a 2 1.00	09/09/2020	15/09/2020	Sandy silty loam	
213976	WS09 1 0.20	09/09/2020	15/09/2020	Silty loam	
213977	WS09 2 0.60	09/09/2020	15/09/2020		
213978	WS09 3 1.00	09/09/2020	15/09/2020	Silty clayey loam	
213979	WS10 1 0.15	09/09/2020	15/09/2020		
213980	WS10 2 1.00	09/09/2020	15/09/2020	Silty clayey loam	
213981	WS10 3 1.80	09/09/2020	15/09/2020		
213982	WS11 2 0.10	09/09/2020	15/09/2020		
213983	WS11 1 0.60	09/09/2020	15/09/2020	Silty loam	
213984	WS12 1 0.15	09/09/2020	15/09/2020	Silty loam	
213985	WS12 2 0.50	09/09/2020	15/09/2020		
213986	WS13 1 0.15	10/09/2020	15/09/2020		
213987	WS13 2 0.70	10/09/2020	15/09/2020	Sandy clayey loam	
213988	WS14 1 0.20	10/09/2020	15/09/2020		
213989	WS14 2 0.50	10/09/2020	15/09/2020	Sandy silty loam	
213990	WS14 3 0.80	10/09/2020	15/09/2020		
213991	WS15 2 0.70	09/09/2020	15/09/2020	Silty loam	1
213992	WS15 3 1.50	09/09/2020	15/09/2020		1
213993	WS16 1 0.20	09/09/2020	15/09/2020	Silty loam	1
213994	WS16 2 0.50	09/09/2020	15/09/2020	Silty loam	1
213995	WS16 3 1.50	09/09/2020	15/09/2020		1
213996	WS17 3 0.10	10/09/2020	15/09/2020		1
213997	WS17 1 0.40	10/09/2020	15/09/2020	Silty loam	1
213998	WS17 2 0.85	10/09/2020	15/09/2020		1
213999	WS18 1 0.35	10/09/2020	15/09/2020	Silty loam	
214000	WS18 2 0.70	10/09/2020	15/09/2020		

Report No.: 20-29855, issue number 1							
		ELAB	Reference	213956	213958	213959	213961
	C	Customer	Reference	2	1	1	2
		;	Sample ID				
		Sai	mple Type	SOIL	SOIL	SOIL	SOIL
			e Location	WS01	WS02	WS02a	WS03
				0.80	0.15	0.50	0.60
			Depth (m)				
			pling Date	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Determinand	Codes	Units	LOD				
Soil sample preparation parame							
Material removed	N	%	0.1	< 0.1	23.9	22.6	33.1
Description of Inert material removed	N		0	None	Stones	Stones	Stones
Metals							
Arsenic	М	mg/kg	1	19.9	25.1	37.7	25.7
Beryllium	U	mg/kg	1	1.3	1.8	2.5	1.3
Cadmium	M	mg/kg	0.5	< 0.5	12.9	3.6	23.8
Chromium	M	mg/kg	5	52.5	90.9	56.4	120
Copper	M	mg/kg	5	31.4	217	197	287
Lead	M	mg/kg	5	201	717	1600	581
Mercury	M	mg/kg	0.5	< 0.5	5.5	2.1	7.3
Nickel	M	mg/kg	5	35.7	48.9	45.3	54.4
Selenium	M	mg/kg	1	< 1.0	< 1.0	< 1.0	1.3
Vanadium Zinc	M	mg/kg	<u>5</u> 	78.7 152	68.4 848	76.2 1130	57.8 1010
	IVI	mg/kg	<u> </u>	152	040	1130	1010
Anions							
Water Soluble Chloride	M	mg/kg	40	< 40	< 40	< 40	< 40
Water Soluble Sulphate	M	g/l	0.02	0.30	0.03	< 0.02	0.05
Inorganics							
Elemental Sulphur	M	mg/kg	20	< 20	< 20	< 20	< 20
Hexavalent Chromium	N	mg/kg	8.0	< 0.8	< 0.8	< 0.8	< 0.8
Total Sulphide	N	mg/kg	2	< 2	< 2	< 2	< 2
Total Cyanide	M	mg/kg	1	< 1.0	4.8	3.2	12.6
Acid Soluble Sulphate (SO4)	U	%	0.02	0.14	0.09	0.12	0.11
Water Soluble Boron	N	mg/kg	0.5	2.0	1.4	1.3	2.0
Miscellaneous							
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	n/t	< 0.1	n/t
Loss On Ignition (450°C)	M	%	0.01	n/t	n/t	6.82	n/t
pH	M	pH units	0.1	8.3	7.6	8.0	7.8
Total Organic Carbon	N	%	0.01	0.94	3.7	4.5	4.0
Organics							
>C8-C10 BCB	N	mg/kg	1	< 1.0	n/t	n/t	n/t
>C10-C12 BCB	N	mg/kg	1	< 1.0	n/t	n/t	n/t
>C12-C16 BCB	N	mg/kg	1	< 1.0	n/t	n/t	n/t
>C16-C21 BCB	N	mg/kg	1	3.3	n/t	n/t	n/t
Diesel Range Organics (>C10-C25)	N N	mg/kg	1	4	n/t	n/t	n/t
Petrol Range Organics (>C6-C10)	N	mg/kg	0.01	0.03	n/t	n/t	n/t
Phenois							
Total Phenols	N	mg/kg	6	< 6	< 6	< 6	< 6

Report No.: 20-29855, issue number 1							
		ELAB	Reference	213956	213958	213959	213961
	C	Customer	Reference	2	1	1	2
			Sample ID				
			•		8011	SOIL	9011
			mple Type		SOIL		SOIL
		Sampl	e Location	WS01	WS02	WS02a	WS03
		Sample	Depth (m)	0.80	0.15	0.50	0.60
		Sam	pling Date	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Determinand	Codes	Units	LOD				
Polyaromatic hydrocarbons							
Naphthalene	М	mg/kg	0.1	< 0.1	0.3	0.3	0.3
Acenaphthylene	M	mg/kg	0.1	< 0.1	0.3	0.3	0.5
Acenaphthene	M	mg/kg	0.1	< 0.1	0.4	0.5	0.3
Fluorene	M	mg/kg	0.1	0.1	< 0.1	< 0.1	0.3
Phenanthrene	M	mg/kg	0.1	0.3	1.5	1.8	4.4
Anthracene	M	mg/kg	0.1	0.2	0.5	0.5	1.5
Fluoranthene	M	mg/kg	0.1	1.1	4.0	4.8	12.4
Pyrene	M	mg/kg	0.1	1.0	3.5	4.2	11.2
Benzo(a)anthracene	M	mg/kg	0.1	0.7	2.1	2.6	7.8
Chrysene	М	mg/kg	0.1	0.8	2.6	3.1	8.6
Benzo(b)fluoranthene	М	mg/kg	0.1	1.1	2.9	3.7	8.1
Benzo(k)fluoranthene	М	mg/kg	0.1	1.1	2.8	4.0	7.8
Benzo(a)pyrene	М	mg/kg	0.1	0.8	2.5	3.1	8.1
Indeno(1,2,3-cd)pyrene	М	mg/kg	0.1	0.6	2.2	2.4	6.5
Dibenzo(a,h)anthracene	M	mg/kg	0.1	0.1	0.6	0.5	1.6
Benzo[g,h,i]perylene	M	mg/kg	0.1	0.5	2.0	2.2	5.2
Total PAH(16)	M	mg/kg	0.4	8.7	28.1	33.9	84.7
Total PAH (Including Coronene GC-FID)	N	mg/kg	2	n/t	n/t	35	n/t
BTEX							
Benzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Toluene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Ethylbenzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
MTBE	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Total BTEX	N	mg/kg	0.01	n/t	n/t	< 0.01	n/t
TPH CWG							
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0
>C10-C12 Aliphatic	М	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0
>C12-C16 Aliphatic	М	mg/kg	1	< 1.0	< 1.0	< 1.0	3.1
>C16-C21 Aliphatic	М	mg/kg	1	< 1.0	1.1	< 1.0	6.1
>C21-C35 Aliphatic	М	mg/kg	1	4.9	14.6	7.8	22.2
>C35-C40 Aliphatic	М	mg/kg	1	1.4	4.0	3.6	7.8
Total aliphatic hydrocarbons (>C5 - C40)	N	mg/kg	1	6.9	20.4	12.8	40.0
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	1.0
>C10-C12 Aromatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0
>C12-C16 Aromatic	M	mg/kg	1	1.1	2.1	2.0	6.3
>C16-C21 Aromatic	M	mg/kg	1	2.8	17.0	17.3	52.0
>C21-C35 Aromatic	M	mg/kg	1	16.2	99.5	77.3	255
>C35-C40 Aromatic	M	mg/kg	1	4.2	10.5	8.8	30.2
Total aromatic hydrocarbons (>C5 - C40)	N	mg/kg	1	25.0	130	107	345
Total petroleum hydrocarbons (>C5 - C40)	N	mg/kg	1	32.0	151	119	385
Total Petroleum Hydrocarbons							
Mineral Oil	M	mg/kg	5	n/t	n/t	^ 119	n/t
PCB (ICES 7 congeners)							
PCB (Total of 7 Congeners)	M	mg/kg	0.03	n/t	n/t	< 0.03	n/t
1. 52 (Total of F Congoliolo)	141	9,119	5.00	11/1	11/1	\$ 0.00	11/1

Report No.: 20-29855, issue number 1						
		ELAB	Reference	213962	213966	213967
	C	Customer	Reference	1	2	3
		,	Sample ID			
		Sar	mple Type	SOIL	SOIL	SOIL
			e Location	WS04	WS05	WS05
		•	Depth (m)	0.50	0.60	1.50
			pling Date	08/09/2020	08/09/2020	08/09/2020
Determinand	Codes	Units	LOD	06/09/2020	00/09/2020	00/09/2020
		Units	LOD			
Soil sample preparation parameters		0/ 1	0.4	40.4	20.0	0.4
Material removed	N N	%	0.1	46.4 Stones,brick,concrete	22.3 Stones,brick,concrete	< 0.1 None
Description of Inert material removed	IN		0	Stories, brick, concrete	Stories, brick, coricrete	None
Metals						
Arsenic	M	mg/kg	1	21.2	22.1	13.4
Beryllium	U	mg/kg	1	1.4	1.4	1.0
Cadmium	M	mg/kg	0.5	1.1	0.8	< 0.5
Chromium	M	mg/kg	5	35.2	43.4	43.0
Copper	M	mg/kg	5	51.2	64.2	22.0
Lead	M	mg/kg	5	397	712	49.1
Mercury	M	mg/kg	0.5	1.3	0.8	< 0.5
Nickel	M	mg/kg	5	24.2	28.4	23.8
Selenium	M	mg/kg	1	< 1.0	< 1.0	< 1.0
Vanadium	M	mg/kg	5	52.2	63.4	61.2
Zinc	M	mg/kg	5	253	352	95.4
Anions						
Water Soluble Chloride	М	mg/kg	40	< 40	< 40	< 40
Water Soluble Sulphate	М	g/l	0.02	0.03	< 0.02	< 0.02
Inorganics		,				
Elemental Sulphur	М	mg/kg	20	< 20	< 20	< 20
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8
Total Sulphide	N	mg/kg	2	< 2	< 2	< 2
Total Cyanide	М	mg/kg	1	1.3	1.0	< 1.0
Acid Soluble Sulphate (SO4)	U	%	0.02	0.13	0.08	0.04
Water Soluble Boron	N	mg/kg	0.5	0.5	0.6	0.7
Miscellaneous						
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	n/t	n/t
Loss On Ignition (450°C)	М	%	0.01	n/t	n/t	n/t
pH	М	pH units	0.1	8.5	8.3	7.9
Total Organic Carbon	N	%	0.01	1.8	2.0	0.41
Organics						
>C8-C10 BCB	N	mg/kg	1	n/t	n/t	< 1.0
>C10-C12 BCB	N	mg/kg	1	n/t	n/t	< 1.0
>C12-C16 BCB	N	mg/kg	1	n/t	n/t	< 1.0
>C16-C21 BCB	N	mg/kg	1	n/t	n/t	< 1.0
Diesel Range Organics (>C10-C25)	N	mg/kg	1	n/t	n/t	< 1
Petrol Range Organics (>C6-C10)	N	mg/kg	0.01	n/t	n/t	0.15
Phenois		J J		7-	7-	
Total Phenois	N	mg/kg	6	< 6	< 6	< 6
TOTAL T HEHUIS	I N	ilig/kg	U	<u> </u>	\ U	\ 0

10 20 2000, 100de Hamber 1		ELAD	Reference	213962	213966	213967
	_					
	C	Customer	Reference	1	2	3
		;	Sample ID			
		Sa	mple Type	SOIL	SOIL	SOIL
		Sampl	e Location	WS04	WS05	WS05
		Sample	Depth (m)	0.50	0.60	1.50
			pling Date	08/09/2020	08/09/2020	08/09/2020
Determine d	0-1			06/09/2020	00/09/2020	00/09/2020
Determinand	Codes	Units	LOD			
Polyaromatic hydrocarbons						
Naphthalene	M	mg/kg	0.1	0.2	0.2	< 0.1
Acenaphthylene	M	mg/kg	0.1	0.2	0.5	< 0.1
Acenaphthene Fluorene	M	mg/kg	0.1 0.1	< 0.1 < 0.1	0.2 0.1	< 0.1 < 0.1
Phenanthrene	M	mg/kg	0.1	0.8	2.4	< 0.1
Anthracene	M	mg/kg mg/kg	0.1	0.8	0.8	< 0.1
Fluoranthene	M	mg/kg	0.1	2.4	6.9	< 0.1
Pyrene	M	mg/kg	0.1	2.1	6.2	< 0.1
Benzo(a)anthracene	М	mg/kg	0.1	1.4	3.9	< 0.1
Chrysene	М	mg/kg	0.1	1.7	4.2	< 0.1
Benzo(b)fluoranthene	М	mg/kg	0.1	2.1	5.1	< 0.1
Benzo(k)fluoranthene	М	mg/kg	0.1	2.1	4.0	< 0.1
Benzo(a)pyrene	М	mg/kg	0.1	1.8	4.8	< 0.1
Indeno(1,2,3-cd)pyrene	М	mg/kg	0.1	1.6	3.6	< 0.1
Dibenzo(a,h)anthracene	M	mg/kg	0.1	0.3	0.9	< 0.1
Benzo[g,h,i]perylene	M	mg/kg	0.1	1.5	3.2	< 0.1
Total PAH(16)	M	mg/kg	0.4	18.4	47.0	< 0.4
Total PAH (Including Coronene GC-FID)	N	mg/kg	2	n/t	n/t	n/t
BTEX						
Benzene	М	ug/kg	10	< 10.0	< 10.0	15.8
Toluene	М	ug/kg	10	< 10.0	< 10.0	< 10.0
Ethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0
Xylenes	M	ug/kg	10	< 10.0	< 10.0	< 10.0
MTBE Total BTEX	N N	ug/kg	10 0.01	< 10.0 n/t	< 10.0 n/t	< 10.0
	IN	mg/kg	0.01	11/1	11/1	11/1
TPH CWG						
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aliphatic >C10-C12 Aliphatic	N M	mg/kg	1	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
>C12-C16 Aliphatic	M	mg/kg mg/kg	1	< 1.0	< 1.0	< 1.0
>C16-C21 Aliphatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0
>C21-C35 Aliphatic	M	mg/kg	1	3.3	8.7	5.2
>C35-C40 Aliphatic	М	mg/kg	1	1.9	3.1	1.7
Total aliphatic hydrocarbons (>C5 - C40)	N	mg/kg	1	5.8	13.3	7.4
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	0.02
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0
>C10-C12 Aromatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0
>C12-C16 Aromatic	M	mg/kg	1	< 1.0	2.3	< 1.0
>C16-C21 Aromatic	M	mg/kg	1	5.0	20.2	1.3
>C21-C35 Aromatic	M	mg/kg	1	27.4	95.4	25.4
>C35-C40 Aromatic Total aromatic hydrocarbons (>C5 - C40)	M N	mg/kg	1	4.9 39.1	18.3 137	9.0 37.4
Total aromatic hydrocarbons (>C5 - C40) Total petroleum hydrocarbons (>C5 - C40)	N	mg/kg mg/kg	1	39.1 44.9	151	44.8
	IN	mg/kg	1	44.3	101	77.0
Total Petroleum Hydrocarbons						
Mineral Oil	M	mg/kg	5	n/t	n/t	n/t
PCB (ICES 7 congeners)						
PCB (Total of 7 Congeners)	М	mg/kg	0.03	n/t	n/t	n/t

		ELAB	Reference	213968	213969	213971	213973	213974
	,		Reference	1	213909	1	1	1
	•			1		ı	1	'
			Sample ID					
		Sar	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample	e Location	WS06	WS06	WS07	WS08	WS08a
		Sample	Depth (m)	0.15	0.50	0.50	0.40	0.70
		Sam	pling Date	08/09/2020	09/09/2020	09/09/2020	09/09/2020	09/09/2020
Determinand	Codes	Units	LOD					
Soil sample preparation parameters	5							
Material removed	N	%	0.1	< 0.1	< 0.1	< 0.1	< 0.1	22.0
Description of Inert material removed	N		0	None	None	None	None	Stones
Metals								
Arsenic	М	mg/kg	1	13.6	n/t	24.2	20.8	16.0
Beryllium	U	mg/kg	1	< 1.0	n/t	1.5	1.2	1.1
Cadmium	М	mg/kg	0.5	22.1	n/t	0.6	7.6	12.7
Chromium	М	mg/kg	5	117	n/t	38.7	79.5	95.0
Copper	М	mg/kg	5	250	n/t	63.5	163	184
Lead	М	mg/kg	5	478	n/t	307	833	593
Mercury	М	mg/kg	0.5	9.0	n/t	0.8	3.4	5.1
Nickel	М	mg/kg	5	43.1	n/t	27.3	37.7	35.4
Selenium	М	mg/kg	1	1.2	n/t	< 1.0	< 1.0	< 1.0
Vanadium	М	mg/kg	5	47.8	n/t	66.8	70.9	59.0
Zinc	M	mg/kg	5	949	n/t	216	615	658
Anions								
Water Soluble Chloride	М	mg/kg	40	< 40	n/t	< 40	< 40	< 40
Water Soluble Sulphate	М	g/l	0.02	< 0.02	n/t	< 0.02	< 0.02	< 0.02
Inorganics		,						
Elemental Sulphur	М	mg/kg	20	< 20	n/t	< 20	< 20	< 20
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	n/t	< 0.8	< 0.8	< 0.8
Total Sulphide	N	mg/kg	2	< 2	n/t	< 2	< 2	< 2
Total Cyanide	М	mg/kg	1	9.7	n/t	< 1.0	1.9	4.7
Acid Soluble Sulphate (SO4)	U	%	0.02	0.10	n/t	0.05	0.07	0.07
Water Soluble Boron	N	mg/kg	0.5	1.3	n/t	0.9	0.9	1.3
Miscellaneous								
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	< 0.1	n/t	n/t	n/t
Loss On Ignition (450°C)	М	%	0.01	n/t	2.81	n/t	n/t	n/t
рН	М	pH units	0.1	7.3	8.1	8.0	8.1	7.8
Total Organic Carbon	N	%	0.01	3.7	0.44	1.5	1.5	1.6
Organics								
>C8-C10 BCB	N	mg/kg	1	n/t	n/t	n/t	< 1.0	n/t
>C10-C12 BCB	N	mg/kg	1	n/t	n/t	n/t	< 1.0	n/t
>C12-C16 BCB	N	mg/kg	1	n/t	n/t	n/t	< 1.0	n/t
>C16-C21 BCB	N	mg/kg	1	n/t	n/t	n/t	3.2	n/t
Diesel Range Organics (>C10-C25)	N	mg/kg	1	n/t	n/t	n/t	3	n/t
Petrol Range Organics (>C6-C10)	N	mg/kg	0.01	n/t	n/t	n/t	< 0.01	n/t
Phenois								
Total Phenols	N	mg/kg	6	< 6	n/t	< 6	< 6	< 6

Report No.: 20-29855, issue number 1												
		ELAB	Reference	213968	213969	213971	213973	213974				
	C	ustomer	Reference	1	2	1	1	1				
			Sample ID					· ·				
				2011	2011	2011	2011	2011				
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL				
		Sampl	e Location	WS06	WS06	WS07	WS08	WS08a				
		Sample	Depth (m)	0.15	0.50	0.50	0.40	0.70				
		Sam	pling Date	08/09/2020	09/09/2020	09/09/2020	09/09/2020	09/09/2020				
Determinand	Codes	Units	LOD					00/00/2020				
	Codes	Ullits	LOD									
Polyaromatic hydrocarbons												
Naphthalene	M	mg/kg	0.1	0.1	n/t	< 0.1	< 0.1	< 0.1				
Acenaphthylene	M	mg/kg	0.1	0.4	n/t	0.1	0.2	0.2				
Acenaphthene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	< 0.1				
Fluorene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	0.1				
Phenanthrene	M	mg/kg	0.1	1.3	n/t	0.9	0.4	0.4				
Anthracene	M	mg/kg	0.1	0.4	n/t	0.2	0.1	0.1				
Fluoranthene Pyrene	M	mg/kg	0.1	4.4 3.8	n/t n/t	2.5 2.1	1.4 1.2	1.3				
Benzo(a)anthracene	M	mg/kg mg/kg	0.1	2.3	n/t	1.1	0.8	0.7				
Chrysene	M	mg/kg	0.1	2.8	n/t	1.5	0.8	0.7				
Benzo(b)fluoranthene	M	mg/kg	0.1	3.0	n/t	2.1	1.1	1.1				
Benzo(k)fluoranthene	M	mg/kg	0.1	3.0	n/t	2.0	1.1	1.0				
Benzo(a)pyrene	M	mg/kg	0.1	2.8	n/t	1.6	0.9	0.9				
Indeno(1,2,3-cd)pyrene	M	mg/kg	0.1	2.2	n/t	1.3	0.8	0.8				
Dibenzo(a,h)anthracene	M	mg/kg	0.1	0.6	n/t	0.3	0.0	0.3				
Benzo[g,h,i]perylene	M	mg/kg	0.1	2.2	n/t	1.1	0.8	0.9				
Total PAH(16)	M	mg/kg	0.4	29.4	n/t	17.0	10.2	9.9				
Total PAH (Including Coronene GC-FID)	N	mg/kg	2	n/t	20	n/t	n/t	n/t				
BTEX				137		1,72	.,,,	191				
	N4	//	40	. 10.0	/4	10.0	. 10.0	. 10.0				
Benzene Toluene	M	ug/kg	10 10	< 10.0	n/t n/t	< 10.0	< 10.0	< 10.0				
Ethylbenzene	M	ug/kg	10	< 10.0 < 10.0	n/t	< 10.0 < 10.0	< 10.0 < 10.0	< 10.0 < 10.0				
Xylenes	M	ug/kg ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	< 10.0				
MTBE	N	ug/kg ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	< 10.0				
Total BTEX	N	mg/kg	0.01	n/t	< 0.01	n/t	n/t	n/t				
TPH CWG		mg/ng	0.01	100	1 0.01	17,0	100	11/1				
	l NI	/I	0.04	. 0.04	/4	. 0.04	. 0.04	. 0.01				
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01				
>C6-C8 Aliphatic	N N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01 < 1.0				
>C8-C10 Aliphatic >C10-C12 Aliphatic	M	mg/kg	1	< 1.0 < 1.0	n/t n/t	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0				
>C12-C16 Aliphatic	M	mg/kg mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	< 1.0				
>C16-C21 Aliphatic	M	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	< 1.0				
>C21-C35 Aliphatic	M	mg/kg	1	7.3	n/t	3.7	12.2	5.5				
>C35-C40 Aliphatic	M	mg/kg	1	2.8	n/t	1.5	2.4	1.5				
Total aliphatic hydrocarbons (>C5 - C40)	N	mg/kg	1	11.6	n/t	5.7	16.0	7.7				
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01				
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01				
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	< 1.0				
>C10-C12 Aromatic	М	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	< 1.0				
>C12-C16 Aromatic	М	mg/kg	1	1.8	n/t	1.0	1.8	< 1.0				
>C16-C21 Aromatic	М	mg/kg	1	10.4	n/t	4.1	9.0	2.2				
>C21-C35 Aromatic	М	mg/kg	1	61.8	n/t	23.3	65.5	18.6				
>C35-C40 Aromatic	М	mg/kg	1	7.2	n/t	4.8	10.3	3.7				
Total aromatic hydrocarbons (>C5 - C40)	N	mg/kg	1	82.4	n/t	33.9	87.6	26.2				
Total petroleum hydrocarbons (>C5 - C40)	N	mg/kg	1	94.0	n/t	39.6	104	33.9				
Total Petroleum Hydrocarbons												
Mineral Oil	M	mg/kg	5	n/t	^ 205	n/t	n/t	n/t				
PCB (ICES 7 congeners)		9,119		11/1		11/10	1,7,5	1173				
	NA	: /I	0.00	Is	0.00	Is	Is	Is				
PCB (Total of 7 Congeners)	M	mg/kg	0.03	n/t	< 0.03	n/t	n/t	n/t				

Report No.: 20-29855, issue number 1							
		ELAB	Reference	213975	213976	213978	213980
	C	Customer	Reference	2	1	3	2
		;	Sample ID				
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	e Location	WS08a	WS09	WS09	WS10
			Depth (m)	1.00	0.20	1.00	1.00
		-	. , ,	09/09/2020	09/09/2020	09/09/2020	09/09/2020
Determinand	Codes	Units	LOD	03/03/2020	03/03/2020	03/03/2020	03/03/2020
Soil sample preparation parameters		Oilits	LOD				
Material removed	-	0/	0.1	47.2	48.6	.01	20.5
Description of Inert material removed	N N	%	0.1	Stones	Stones	< 0.1 None	Stones,clinker
	IN		U	Stories	Stories	None	Stories, cirricer
Metals							
Arsenic	M	mg/kg	1	9.7	31.1	22.4	25.7
Beryllium	U	mg/kg	1	< 1.0	2.4	1.3	1.9
Cadmium	M	mg/kg	0.5	< 0.5	1.3	< 0.5	0.6
Chromium	М	mg/kg	5	30.8	34.3	53.4	56.3
Copper	M	mg/kg	5	13.6	111	21.6	79.8
Lead	M	mg/kg	5	29.1	910	54.3	561
Mercury	М	mg/kg	0.5	< 0.5	1.4	< 0.5	1.3
Nickel	М	mg/kg	5	18.5	33.2	31.6	39.7
Selenium	М	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium	M	mg/kg	5	42.1	61.8	79.9	86.7
Zinc	M	mg/kg	5	48.8	1280	120	336
Anions							
Water Soluble Chloride	М	mg/kg	40	< 40	< 40	< 40	< 40
Water Soluble Sulphate	М	g/l	0.02	< 0.02	< 0.02	< 0.02	< 0.02
Inorganics							
Elemental Sulphur	М	mg/kg	20	< 20	< 20	< 20	< 20
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8	< 0.8
Total Sulphide	N	mg/kg	2	< 2	< 2	< 2	< 2
Total Cyanide	М	mg/kg	1	1.8	2.3	1.0	< 1.0
Acid Soluble Sulphate (SO4)	U	%	0.02	0.03	0.08	0.04	0.08
Water Soluble Boron	N	mg/kg	0.5	0.7	1.1	0.7	1.3
Miscellaneous							
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	n/t	n/t	n/t
Loss On Ignition (450°C)	М	%	0.01	n/t	n/t	n/t	n/t
pH	М	pH units	0.1	8.1	7.4	7.6	8.2
Total Organic Carbon	N	%	0.01	0.16	5.7	0.40	1.8
Organics							
>C8-C10 BCB	N	mg/kg	1	n/t	n/t	< 1.0	< 1.0
>C10-C12 BCB	N	mg/kg	1	n/t	n/t	< 1.0	< 1.0
>C12-C16 BCB	N	mg/kg	1	n/t	n/t	< 1.0	1.0
>C16-C21 BCB	N	mg/kg	1	n/t	n/t	< 1.0	6.6
Diesel Range Organics (>C10-C25)	N	mg/kg	1	n/t	n/t	< 1	8
Petrol Range Organics (>C6-C10)	N	mg/kg	0.01	n/t	n/t	0.26	0.07
Phenois							
Total Phenois	N	mg/kg	6	< 6	< 6	< 6	< 6
	.,	a,a			. 0		. •

1.000.11.01. 20 20000, 10000 110111001 1	port No 20-29000, issue number i								
		ELAB	Reference	213975	213976	213978	213980		
	C	Customer	Reference	2	1	3	2		
			Sample ID						
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL		
			e Location	WS08a	WS09	WS09	WS10		
			Depth (m)	1.00	0.20	1.00	1.00		
		Sam	pling Date	09/09/2020	09/09/2020	09/09/2020	09/09/2020		
Determinand	Codes	Units	LOD						
Polyaromatic hydrocarbons									
Naphthalene	М	mg/kg	0.1	< 0.1	0.7	< 0.1	0.1		
Acenaphthylene	М	mg/kg	0.1	< 0.1	2.5	< 0.1	< 0.1		
Acenaphthene	М	mg/kg	0.1	< 0.1	0.4	< 0.1	< 0.1		
Fluorene	М	mg/kg	0.1	< 0.1	0.8	< 0.1	0.3		
Phenanthrene	М	mg/kg	0.1	< 0.1	13.7	< 0.1	0.6		
Anthracene	М	mg/kg	0.1	< 0.1	2.9	< 0.1	0.2		
Fluoranthene	М	mg/kg	0.1	< 0.1	29.8	< 0.1	2.0		
Pyrene	М	mg/kg	0.1	< 0.1	24.7	< 0.1	1.7		
Benzo(a)anthracene	M	mg/kg	0.1	< 0.1	13.8	< 0.1	1.0		
Chrysene	M	mg/kg	0.1	< 0.1	13.6	< 0.1	1.2		
Benzo(b)fluoranthene	М	mg/kg	0.1	< 0.1	13.3	< 0.1	1.3		
Benzo(k)fluoranthene	М	mg/kg	0.1	< 0.1	12.0	< 0.1	1.4		
Benzo(a)pyrene	М	mg/kg	0.1	< 0.1	14.1	< 0.1	1.2		
Indeno(1,2,3-cd)pyrene	М	mg/kg	0.1	< 0.1	10.4	< 0.1	1.0		
Dibenzo(a,h)anthracene	М	mg/kg	0.1	< 0.1	2.4	< 0.1	0.3		
Benzo[g,h,i]perylene	M	mg/kg	0.1	< 0.1	8.9	< 0.1	0.8		
Total PAH(16)	M	mg/kg	0.4	< 0.4	164	< 0.4	13.1		
Total PAH (Including Coronene GC-FID)	N	mg/kg	2	n/t	n/t	n/t	n/t		
BTEX									
Benzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0		
Toluene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0		
Ethylbenzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0		
Xylenes	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0		
MTBE	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0		
Total BTEX	N	mg/kg	0.01	n/t	n/t	n/t	n/t		
TPH CWG									
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01		
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01		
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0		
>C10-C12 Aliphatic	М	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0		
>C12-C16 Aliphatic	М	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0		
>C16-C21 Aliphatic	М	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0		
>C21-C35 Aliphatic	М	mg/kg	1	5.7	11.1	7.4	5.4		
>C35-C40 Aliphatic	М	mg/kg	1	1.4	4.1	1.4	1.9		
Total aliphatic hydrocarbons (>C5 - C40)	N	mg/kg	1	7.7	16.6	9.3	8.4		
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01		
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01		
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0		
>C10-C12 Aromatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0		
>C12-C16 Aromatic	М	mg/kg	1	< 1.0	2.7	< 1.0	1.5		
>C16-C21 Aromatic	M	mg/kg	1	1.0	27.4	1.1	6.4		
>C21-C35 Aromatic	М	mg/kg	1	23.9	115	22.9	34.1		
>C35-C40 Aromatic	M	mg/kg	1	8.4	14.3	8.4	6.5		
Total aromatic hydrocarbons (>C5 - C40)	N	mg/kg	1	35.0	161	34.1	49.4		
Total petroleum hydrocarbons (>C5 - C40)	N	mg/kg	1	42.7	178	43.4	57.8		
Total Petroleum Hydrocarbons									
Mineral Oil	M	mg/kg	5	n/t	n/t	n/t	n/t		
PCB (ICES 7 congeners)									
PCB (Total of 7 Congeners)	M	mg/kg	0.03	n/t	n/t	n/t	n/t		
- 35 (Total of F Congeniers)	171	mg/Ng	0.00	11/1	11/1	11/1	11/ C		

Report No.: 20-29655, Issue number i											
		ELAB	Reference	213983	213984	213987	213989	213991			
	C	Customer	Reference	1	1	2	2	2			
		9	Sample ID								
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL			
			e Location	WS11	WS12	WS13	WS14	WS15			
		•		0.60				0.70			
			Depth (m)		0.15	0.70	0.50				
Г				09/09/2020	09/09/2020	10/09/2020	10/09/2020	09/09/2020			
Determinand	Codes	Units	LOD								
Soil sample preparation parameters	;										
Material removed	N	%	0.1	40.3	< 0.1	< 0.1	22.6	47.7			
Description of Inert material removed	N		0	Stones	None	None	Stones	Stones			
Metals											
Arsenic	М	mg/kg	1	26.6	15.6	21.2	21.4	21.4			
Beryllium	U	mg/kg	1	1.6	1.1	1.4	1.0	1.8			
Cadmium	М	mg/kg	0.5	2.8	< 0.5	< 0.5	0.9	7.1			
Chromium	М	mg/kg	5	48.7	43.2	54.1	47.3	63.5			
Copper	М	mg/kg	5	115	29.0	18.6	45.7	135			
Lead	М	mg/kg	5	412	98.9	23.3	450	584			
Mercury	М	mg/kg	0.5	0.9	< 0.5	< 0.5	< 0.5	3.4			
Nickel	M	mg/kg	5	38.9	21.5	45.8	32.2	42.1			
Selenium	М	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Vanadium	M	mg/kg	5	60.1	64.1	82.6	64.3	63.7			
Zinc	M	mg/kg	5	532	104	69.1	262	623			
Anions											
Water Soluble Chloride	M	mg/kg	40	< 40	< 40	< 40	< 40	< 40			
Water Soluble Sulphate	М	g/l	0.02	0.07	< 0.02	< 0.02	0.05	0.02			
Inorganics											
Elemental Sulphur	М	mg/kg	20	< 20	< 20	< 20	< 20	< 20			
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8			
Total Sulphide	N	mg/kg	2	< 2	< 2	< 2	< 2	< 2			
Total Cyanide	M	mg/kg	1	1.2	< 1.0	< 1.0	< 1.0	1.8			
Acid Soluble Sulphate (SO4)	U	%	0.02	0.19	0.04	0.04	0.12	0.16			
Water Soluble Boron	N	mg/kg	0.5	0.6	0.5	0.7	0.8	0.8			
Miscellaneous											
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	n/t	n/t	< 0.1	n/t			
Loss On Ignition (450°C)	М	%	0.01	n/t	n/t	n/t	2.44	n/t			
pH	М	pH units	0.1	8.9	6.6	7.8	9.5	8.4			
Total Organic Carbon	N	%	0.01	2.2	1.0	0.29	1.5	4.9			
Organics											
>C8-C10 BCB	N	mg/kg	1	n/t	n/t	< 1.0	n/t	n/t			
>C10-C12 BCB	N	mg/kg	1	n/t	n/t	< 1.0	n/t	n/t			
>C12-C16 BCB	N	mg/kg	1	n/t	n/t	< 1.0	n/t	n/t			
>C16-C21 BCB	N	mg/kg	1	n/t	n/t	< 1.0	n/t	n/t			
Diesel Range Organics (>C10-C25)	N	mg/kg	1	n/t	n/t	< 1	n/t	n/t			
Petrol Range Organics (>C6-C10)	N	mg/kg	0.01	n/t	n/t	0.16	n/t	n/t			
Phenois											
Total Phenols	N	mg/kg	6	< 6	< 6	< 6	< 6	< 6			

Report No.: 20-29855, issue number 1												
		ELAB	Reference	213983	213984	213987	213989	213991				
	C	Customer	Reference	1	1	2	2	2				
				· ·	·							
			Sample ID									
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL				
		Sampl	e Location	WS11	WS12	WS13	WS14	WS15				
		Sample	Depth (m)	0.60	0.15	0.70	0.50	0.70				
				09/09/2020	09/09/2020	10/09/2020		09/09/2020				
				09/09/2020	09/09/2020	10/09/2020	10/09/2020	09/09/2020				
Determinand	Codes	Units	LOD									
Polyaromatic hydrocarbons												
Naphthalene	М	mg/kg	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Acenaphthylene	M	mg/kg	0.1	0.1	< 0.1	< 0.1	< 0.1	0.1				
Acenaphthene	M	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1				
Fluorene	M	mg/kg	0.1	0.2	0.1	< 0.1	0.1	< 0.1				
Phenanthrene	М	mg/kg	0.1	0.6	< 0.1	< 0.1	0.1	0.8				
Anthracene	M	mg/kg	0.1	0.2	< 0.1	< 0.1	0.1	0.3				
Fluoranthene	М	mg/kg	0.1	2.0	< 0.1	< 0.1	0.6	2.1				
Pyrene	М	mg/kg	0.1	1.8	< 0.1	< 0.1	0.7	1.9				
Benzo(a)anthracene	М	mg/kg	0.1	1.1	< 0.1	< 0.1	0.4	1.3				
Chrysene	M	mg/kg	0.1	1.1	< 0.1	< 0.1	0.5	1.2				
Benzo(b)fluoranthene	М	mg/kg	0.1	1.4	< 0.1	< 0.1	1.0	1.9				
Benzo(k)fluoranthene	М	mg/kg	0.1	1.2	< 0.1	< 0.1	0.8	1.5				
Benzo(a)pyrene	M	mg/kg	0.1	1.1	< 0.1	< 0.1	0.6	1.4				
Indeno(1,2,3-cd)pyrene	M	mg/kg	0.1	0.8	< 0.1	< 0.1	0.6	1.1				
Dibenzo(a,h)anthracene	M	mg/kg	0.1	0.2	< 0.1	< 0.1	0.2	0.3				
Benzo[g,h,i]perylene	M	mg/kg	0.1	0.7	< 0.1	< 0.1	0.6	1.0				
Total PAH (16)	M	mg/kg	0.4	12.8	0.5	< 0.4	6.4	15.1				
Total PAH (Including Coronene GC-FID)	N	mg/kg	2	n/t	n/t	n/t	/	n/t				
BTEX												
Benzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0				
Toluene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0				
Ethylbenzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0				
Xylenes	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0				
MTBE	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0				
Total BTEX	N	mg/kg	0.01	n/t	n/t	n/t	< 0.01	n/t				
TPH CWG												
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
>C10-C12 Aliphatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
>C12-C16 Aliphatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
>C16-C21 Aliphatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0	5.9	< 1.0				
>C21-C35 Aliphatic	M	mg/kg	1	6.8	4.3	2.8	38.4	7.8				
>C35-C40 Aliphatic	М	mg/kg	1	2.1	1.3	< 1.0	8.4	3.4				
Total aliphatic hydrocarbons (>C5 - C40)	N	mg/kg	1	10.4	6.0	4.1	53.5	12.7				
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
>C10-C12 Aromatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				
>C12-C16 Aromatic	M	mg/kg	1	1.2	< 1.0	< 1.0	1.6	4.4				
>C16-C21 Aromatic	M	mg/kg	1	4.9	< 1.0	< 1.0	18.0	25.3				
>C21-C35 Aromatic	M	mg/kg	1	44.5	15.9	7.5	173	82.8				
>C35-C40 Aromatic	M	mg/kg	1	8.4	5.2	2.4	50.3	11.2				
Total aromatic hydrocarbons (>C5 - C40)	N	mg/kg	1	60.0	23.4	11.8	244	125				
Total petroleum hydrocarbons (>C5 - C40)	N	mg/kg	1	70.3	29.4	15.9	298	137				
Total Petroleum Hydrocarbons												
Mineral Oil	M	mg/kg	5	n/t	n/t	n/t	^ 256	n/t				
PCB (ICES 7 congeners)												
PCB (Total of 7 Congeners)	M	mg/kg	0.03	n/t	n/t	n/t	0.20	n/t				
		שיי שיי	3.00	.,, .	, .	, .	5.20	.,, .				

Report No.: 20-29855, issue number 1							
		ELAB	Reference	213993	213994	213997	213999
	(Customer	Reference	1	2	1	1
		;	Sample ID				
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL
			e Location		WS16	WS17	WS18
			Depth (m)		0.50	0.40	0.35
		-					
.	—			09/09/2020	09/09/2020	10/09/2020	10/09/2020
Determinand	Codes	Units	LOD				
Soil sample preparation paramete							
Material removed	N	%	0.1	< 0.1	21.7	21.0	32.5
Description of Inert material removed	N		0	None	Stones,clinker	Stones, clinker	Stones, clinke
Metals							
Arsenic	M	mg/kg	1	26.2	40.6	65.2	17.5
Beryllium	U	mg/kg	1	1.3	2.7	4.2	1.3
Cadmium	M	mg/kg	0.5	10.0	2.7	1.2	0.8
Chromium	M	mg/kg	5	83.2	54.3	47.7	35.6
Copper	M	mg/kg	5	185	218	312	66.4
Lead	M	mg/kg	5	335	2060	1170	648
Mercury	M	mg/kg	0.5	4.6	3.1	3.0	1.0
Nickel	M	mg/kg	5	38.8	47.8	57.6	23.4
Selenium	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium	M	mg/kg	5	65.5	71.8	96.7	53.4
Zinc	M	mg/kg	5	557	1330	824	308
Anions							
Water Soluble Chloride	M	mg/kg	40	< 40	< 40	< 40	< 40
Water Soluble Sulphate	M	g/l	0.02	< 0.02	< 0.02	< 0.02	0.07
Inorganics	7						
Elemental Sulphur	M	mg/kg	20	< 20	< 20	< 20	< 20
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8	< 0.8
Total Sulphide	N	mg/kg	2	< 2	< 2	< 2	< 2
Total Cyanide	М	mg/kg	1	3.6	2.7	1.3	1.4
Acid Soluble Sulphate (SO4)	U	%	0.02	0.07	0.13	0.13	0.13
Water Soluble Boron	N	mg/kg	0.5	1.1	1.4	0.9	0.6
Miscellaneous							
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	n/t	n/t	< 0.1
Loss On Ignition (450°C)	M	%	0.01	n/t	n/t	n/t	4.36
pH	M	pH units	0.1	7.3	7.8	7.8	9.4
Total Organic Carbon	N	%	0.01	2.9	5.4	7.4	3.4
Organics							
>C8-C10 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t
>C10-C12 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t
>C12-C16 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t
>C16-C21 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t
Diesel Range Organics (>C10-C25)	N	mg/kg	1	n/t	n/t	n/t	n/t
Petrol Range Organics (>C6-C10)	N	mg/kg	0.01	n/t	n/t	n/t	n/t
Phenois		. 55	-				
Total Phenois	N	mg/kg	6	< 6	< 6	< 6	< 6
Total Friends	IN	ing/kg	U	\ 0	\ 0	\ 0	<u> </u>

Report No.: 20-29855, issue number 1							
		ELAB	Reference	213993	213994	213997	213999
	(Customer	Reference	1	2	1	1
			Sample ID				
			•	SOIL	SOIL	SOIL	SOIL
			mple Type				
		Sampl	e Location	WS16	WS16	WS17	WS18
		Sample	Depth (m)	0.20	0.50	0.40	0.35
		Sam	pling Date	09/09/2020	09/09/2020	10/09/2020	10/09/2020
Determinand	Codes	Units	LOD				
Polyaromatic hydrocarbons	1 00000						
			0.4	.0.1	0.0	0.0	0.0
Naphthalene Acenaphthylene	M	mg/kg	0.1	< 0.1	0.2	0.3	0.2
Acenaphthene	M	mg/kg mg/kg	0.1	< 0.1	0.2	0.2	0.5
Fluorene	M	mg/kg	0.1	0.2	0.2	< 0.1	< 0.1
Phenanthrene	M	mg/kg	0.1	0.6	2.9	1.5	1.1
Anthracene	M	mg/kg	0.1	0.0	0.4	0.4	0.5
Fluoranthene	M	mg/kg	0.1	1.6	5.3	4.2	2.9
Pyrene	M	mg/kg	0.1	1.4	4.5	3.5	2.8
Benzo(a)anthracene	M	mg/kg	0.1	0.9	2.2	2.2	2.0
Chrysene	M	mg/kg	0.1	1.1	3.1	2.6	2.3
Benzo(b)fluoranthene	M	mg/kg	0.1	1.7	3.6	2.8	3.4
Benzo(k)fluoranthene	M	mg/kg	0.1	1.4	2.8	2.6	2.9
Benzo(a)pyrene	M	mg/kg	0.1	1.1	3.1	2.6	3.6
Indeno(1,2,3-cd)pyrene	M	mg/kg	0.1	1.0	2.6	2.0	3.8
Dibenzo(a,h)anthracene	M	mg/kg	0.1	0.3	0.6	0.5	0.8
Benzo[g,h,i]perylene	М	mg/kg	0.1	1.0	2.2	1.8	3.1
Total PAH(16)	М	mg/kg	0.4	12.6	33.9	27.5	30.2
Total PAH (Including Coronene GC-FID)	N	mg/kg	2	n/t	n/t	n/t	31
BTEX	-						
Benzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Toluene	M	ug/kg ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Ethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
MTBE	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Total BTEX	N	mg/kg	0.01	n/t	n/t	n/t	< 0.01
TPH CWG		133		141		1,1,1	
	l NI		0.04	. 0.04	. 0.01	. 0.04	0.04
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01 < 1.0	< 0.01
>C8-C10 Aliphatic	N M	mg/kg	1	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0
>C10-C12 Aliphatic >C12-C16 Aliphatic	M	mg/kg mg/kg	1	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
>C16-C21 Aliphatic	M	mg/kg	1	< 1.0	1.4	< 1.0	< 1.0
>C1-C35 Aliphatic	M	mg/kg	1	6.3	11.5	5.0	4.5
>C35-C40 Aliphatic	M	mg/kg	1	2.1	5.4	2.6	1.9
Total aliphatic hydrocarbons (>C5 - C40)	N	mg/kg	1	9.5	19.2	8.4	7.2
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0
>C10-C12 Aromatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0
>C12-C16 Aromatic	M	mg/kg	1	1.6	2.8	1.3	1.2
>C16-C21 Aromatic	M	mg/kg	1	7.8	35.6	7.7	5.9
>C21-C35 Aromatic	M	mg/kg	1	46.3	165	43.5	33.0
>C35-C40 Aromatic	M	mg/kg	1	7.6	19.3	6.8	4.5
Total aromatic hydrocarbons (>C5 - C40)	N	mg/kg	1	64.3	224	60.2	45.5
Total petroleum hydrocarbons (>C5 - C40)	N	mg/kg	1	73.7	243	68.5	52.7
Total Petroleum Hydrocarbons							
Mineral Oil	М	mg/kg	5	n/t	n/t	n/t	^ 78
	IVI	ilig/kg	<u> </u>	11/1	11/1	11/1	10
PCB (ICES 7 congeners)	1 -						
PCB (Total of 7 Congeners)	M	mg/kg	0.03	n/t	n/t	n/t	< 0.03

Results Summary 2683
Report No.: 20-29855, issue number 1

Report No.: 20-29855, is									
Elab Ref:	213999						ill Waste Ac Criteria Lim	-	
Sample Date:	10/09/202	:0					Ctable New		
Sample ID:	WS18 1					1	Stable Non- reactive		
Depth (m)	0.35					Inert Waste	Hazardous waste in non- hazardous	Hazardous Waste Landfill	
Site:		Phase	1 Cambri	idge Road		Landfill			
Determinand		Code	Units]	Landfill		
Total Organic Carbon		N	%		3.40	3	5	6	
Loss on Ignition		М	%		4.4			10	
Total BTEX		М	mg/kg		< 0.01	6			
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1			
TPH Total WAC		М	mg/kg		78	500			
Total (of 17) PAHs		N	mg/kg		31.0	100			
рН		М			9.4		>6		
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate	
Eluate Analysis			10:1		10:1	l imit values	imit values for compliance leaching te		
			mg/l		mg/kg		S EN 12457-2 a	_	
Arsenic		N	0.013		0.13	0.5	2	25	
Barium		N	0.013		0.13	20	100	300	
Cadmium		N	< 0.001		< 0.01	0.04	1	5	
Chromium		N	< 0.005		< 0.05	0.5	10	70	
Copper		N	0.016		0.16	2	50	100	
Mercury		N	< 0.005		< 0.01	0.01	0.2	2	
Molybdenum		N	< 0.005		< 0.05	0.5	10	30	
Nickel		N	0.002		< 0.05	0.4	10	40	
Lead		N	0.012		0.12	0.5	10	50	
Antimony		N	0.005		0.05	0.06	0.7	5	
Selenium		N	< 0.005		< 0.05	0.1	0.5	7	
Zinc		N	0.016		0.16	4	50	200	
Chloride		N	< 5		< 50	800	15000	25000	
Fluoride		N	< 5		< 10	10	150	500	
Sulphate		N	11		114.00	1000	20000	50000	
Total Dissolved Solids		N	97		974.00	4000	60000	100000	
Phenol Index		N	< 0.01		< 0.10	1	-	-	
Dissolved Organic Carbon		N	19.600		196.00	500	800	1000	
Leach Test Information	n								
pН		N	7.9						
Conductivity (uS/cm)		N	145						
Dry mass of test portion (g)			100.000						
Dry Matter (%)			88						
Moisture (%)			14						
Eluent Volume (ml)			940						
Lidonic voidinio (IIII)			J-70			I			

Results are expressed on a dry weight basis, after correction for moisture content where applicable * Stated limits are for guidance only, and not for conformity assessment.

Results Summary

Report No.: 20-29855, issue number 1

-						andfi	ill Waste Ac	centance
Elab Ref:	213989						Criteria Lim	•
Sample Date:	10/09/202	0					Otable New	
Sample ID:	WS14 2					1	Stable Non- reactive	
Depth (m)	0.5					Inert Waste	Hazardous	Hazardous
Site:		Phase	1 Cambri	dge Road		Landfill	hazardous	Waste Landfill
						1		
Determinand		Code	Units			1	Landfill	
Total Organic Carbon		N	%		1.50	3	5	6
Loss on Ignition		М	%		2.4			10
Total BTEX		М	mg/kg		< 0.01	6		
Total PCBs (7 congeners)		М	mg/kg		0.20	1		
TPH Total WAC		М	mg/kg		256	500		
Total (of 17) PAHs		N	mg/kg		7.0	100		
рН		М			9.5		>6	
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate
Eluate Analysis			10:1		10:1	Limit values	values for compliance leaching t	
<u> </u>			mg/l		mg/kg		S EN 12457-2 a	
Arsenic		N	0.012		0.12	0.5	2	25
Barium		N	< 0.005		< 0.05	20	100	300
Cadmium		N	< 0.001		< 0.01	0.04	1	5
Chromium		N	< 0.005		< 0.05	0.5	10	70
Copper		N	0.016		0.16	2	50	100
Mercury		N	< 0.005		< 0.01	0.01	0.2	2
Molybdenum		N	< 0.005		< 0.05	0.5	10	30
Nickel		N	0.002		< 0.05	0.4	10	40
Lead		N	0.004		< 0.05	0.5	10	50
Antimony		N	< 0.005		< 0.05	0.06	0.7	5
Selenium		N	< 0.005		< 0.05	0.1	0.5	7
Zinc		N	0.008		0.08	4	50	200
Chloride		N	< 5		< 50	800	15000	25000
Fluoride		N	< 5		< 10	10	150	500
Sulphate		N	9		88.30	1000	20000	50000
Total Dissolved Solids		N	82		819.00	4000	60000	100000
Phenol Index		N	< 0.01		< 0.10	1	-	-
Dissolved Organic Carbon		N	17.800		178.00	500	800	1000
Leach Test Informatio	n							
pH		N	7.8					
Conductivity (uS/cm)		N	122					
Dry mass of test portion (g)			100.000					
Dry Matter (%)			95					
Moisture (%)			6					
Eluent Volume (ml)	+		950					

Results are expressed on a dry weight basis, after correction for moisture content where applicable * Stated limits are for guidance only, and not for conformity assessment.

Results Summary 2683
Report No.: 20-29855, issue number 1

						Landfi	ill Waste Ac	contanco	
Elab Ref:	213969					I	ni waste Ac Criteria Lim	•	
Sample Date:	09/09/202	0					Ctable New		
Sample ID:	WS06 2					1	Stable Non- reactive		
Depth (m)	0.5					Inert Waste		Hazardous Waste Landfill	
Site:		Phase	1 Cambri	dge Road		Landfill			
							hazardous Landfill		
Determinand		Code	Units				Lanum		
Total Organic Carbon		N	%		0.44	3	5	6	
Loss on Ignition		М	%		2.8			10	
Total BTEX		М	mg/kg		< 0.01	6			
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1			
TPH Total WAC		М	mg/kg		205	500			
Total (of 17) PAHs		N	mg/kg		20.0	100			
рН		М			8.1		>6		
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate	
Eluate Analysis			10:1		10:1	l imit values	Limit values for compliance leaching to		
			mg/l		mg/kg		S EN 12457-2 a	•	
Arsenic		N	< 0.005		< 0.05	0.5	2	25	
Barium		N	0.007		0.07	20	100	300	
Cadmium		N	< 0.001		< 0.01	0.04	1	5	
Chromium		N	< 0.005		< 0.05	0.5	10	70	
Copper		N	0.013		0.13	2	50	100	
Mercury		N	< 0.005		< 0.01	0.01	0.2	2	
Molybdenum		N	0.021		0.21	0.5	10	30	
Nickel		N	0.001		< 0.05	0.4	10	40	
Lead		N	< 0.001		< 0.05	0.5	10	50	
Antimony		N	< 0.005		< 0.05	0.06	0.7	5	
Selenium		N	< 0.005		< 0.05	0.1	0.5	7	
Zinc		N	< 0.005		< 0.05	4	50	200	
Chloride		N	< 5		< 50	800	15000	25000	
Fluoride		N	< 5		< 10	10	150	500	
Sulphate		N	5		49.30	1000	20000	50000	
Total Dissolved Solids		N	77		765.00	4000	60000	100000	
Phenol Index		N	< 0.01		< 0.10	1	-	-	
Dissolved Organic Carbon		N	15.300		153.00	500	800	1000	
Leach Test Information))								
pН		N	7.9						
Conductivity (uS/cm)		N	114						
Dry mass of test portion (g)			100.000						
Dry Matter (%)			78						
Moisture (%)			28						
1VIOI3(UIE (/0)	1								

Results are expressed on a dry weight basis, after correction for moisture content where applicable * Stated limits are for guidance only, and not for conformity assessment.

Results Summary 2683
Report No.: 20-29855, issue number 1

WAC Analysis									
Elab Ref:	213959						ill Waste Ac Criteria Lim	-	
Sample Date:	08/09/202	:0					Ctable New		
Sample ID:	WS02a 1					1	Stable Non- reactive		
Depth (m)	0.5					Inert Waste	te Hazardous	Hazardous Waste Landfill	
Site:		Phase	1 Cambr	idge Road		Landfill			
Determinand		Code	Units						
Total Organic Carbon		N	%		4.50	3	5	6	
Loss on Ignition		М	%		6.8			10	
Total BTEX		М	mg/kg		< 0.01	6			
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1			
TPH Total WAC		М	mg/kg		119	500			
Total (of 17) PAHs		N	mg/kg		35.0	100			
рН		М			8.0		>6		
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate	
Eluate Analysis			10:1		10:1	Limit values	Limit values for compliance leaching to		
			mg/l		mg/kg		S EN 12457-2 a	_	
Arsenic		N	0.025		0.25	0.5	2	25	
Barium		N	0.023		0.13	20	100	300	
Cadmium		N	< 0.001		< 0.01	0.04	1	5	
Chromium		N	< 0.005		< 0.05	0.5	10	70	
Copper		N	0.016		0.16	2	50	100	
Mercury		N	< 0.005		< 0.01	0.01	0.2	2	
Molybdenum		N	< 0.005		< 0.05	0.5	10	30	
Nickel		N	0.002		< 0.05	0.4	10	40	
Lead		N	0.029		0.29	0.5	10	50	
Antimony		N	0.014		0.14	0.06	0.7	5	
Selenium		N	< 0.005		< 0.05	0.1	0.5	7	
Zinc		N	0.012		0.12	4	50	200	
Chloride		N	< 5		< 50	800	15000	25000	
Fluoride		N	< 5		< 10	10	150	500	
Sulphate		N	9		87.40	1000	20000	50000	
Total Dissolved Solids		N	86		860.00	4000	60000	100000	
Phenol Index		N	< 0.01		< 0.10	1	-	-	
Dissolved Organic Carbon		N	15.300		153.00	500	800	1000	
Leach Test Information	n								
pН		N	7.8						
Conductivity (uS/cm)		N	128						
Dry mass of test portion (g)			100.000						
Dry Matter (%)			87						
Moisture (%)			15						
Eluent Volume (ml)			940						
Lidonic voidinio (IIII)			U-70						

Results are expressed on a dry weight basis, after correction for moisture content where applicable * Stated limits are for guidance only, and not for conformity assessment.

Unit A2, Windmill Road, Ponswood Industrial Estate, St Leonards on Sea, East Sussex, TN38 9BY Tel: +44 (0)1424 718618, Email: info@elab-uk.co.uk, Web: www.elab-uk.co.uk

Results Summary

Report No.: 20-29855, issue number 1

Asbestos Results

Analytical result only applies to the sample as submitted by the client. Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client.

Elab No Depth (m)	Clients Reference	Description of Sample Matrix #	Asbestos	Gravimetric	Gravimetric	Free Fibre	Total
			Identification	Analysis Total	Analysis by ACM	Analysis	Asbestos
				(%)	Type (%)	(%)	(%)
213956 0.80	WS01 2	Brown Soil, Stones, Clinker	No asbestos detected	n/t	n/t	n/t	n/t
213958 0.15	WS02 1	Brown Soil, Stones, Clinker, Plant Material	No asbestos detected	n/t	n/t	n/t	n/t
213959 0.50	WS02a 1	Brown Soil, Stones, Clinker, Brick, Glass, China	No asbestos detected	n/t	n/t	n/t	n/t
213961 0.60	WS03 2	Brown Soil, Stones, Clinker, Glass, Plant Material	No asbestos detected	n/t	n/t	n/t	n/t
213962 0.50	WS04 1	Brown Soil, Stones, Clinker, Brick, Concrete	No asbestos detected	n/t	n/t	n/t	n/t
213966 0.60	WS05 2	Brown Soil, Stones, Clinker, Brick, Slate, Concrete	No asbestos detected	n/t	n/t	n/t	n/t
213967 1.50	WS05 3	Brown Soil, Stones, Clinker	No asbestos detected	n/t	n/t	n/t	n/t
213968 0.15	WS06 1	Brown Soil, Stones, Clinker, Plant Material	No asbestos detected	n/t	n/t	n/t	n/t
213971 0.50	WS07 1	Brown Soil, Stones, Clinker	No asbestos detected	n/t	n/t	n/t	n/t
213973 0.40	WS08 1	Brown Soil, Stones, Clinker, Brick	No asbestos detected	n/t	n/t	n/t	n/t
213974 0.70	WS08a 1	Brown Soil, Stones, Clinker, Concrete	No asbestos detected	n/t	n/t	n/t	n/t
213975 1.00	WS08a 2	Brown Soil, Stones	No asbestos detected	n/t	n/t	n/t	n/t
213976 0.20	WS09 1	Brown Soil, Stones, Clinker, Plant Material	No asbestos detected	n/t	n/t	n/t	n/t
213978 1.00	WS09 3	Brown Soil, Stones	No asbestos detected	n/t	n/t	n/t	n/t
213980 1.00	WS10 2	Brown Soil, Stones	No asbestos detected	n/t	n/t	n/t	n/t
213983 0.60	WS11 1	Brown Soil, Stones, Clinker, Brick, Concrete	No asbestos detected	n/t	n/t	n/t	n/t
213984 0.15	WS12 1	Brown sandy soil, stones, organics	No asbestos detected	n/t	n/t	n/t	n/t
213987 0.70	WS13 2	Brown sandy soil, stones	No asbestos detected	n/t	n/t	n/t	n/t
213989 0.50	WS14 2	Brown sandy soil, stones, concrete, clinker	Amosite (A.I.B)	n/t	n/t	n/t	n/t
213991 0.70	WS15 2	Brown sandy soil, stones, concrete, brick, clinker	No asbestos detected	n/t	n/t	n/t	n/t
213993 0.20	WS16 1	Brown sandy soil, stones, clinker, organics	No asbestos detected	n/t	n/t	n/t	n/t
213994 0.50	WS16 2	Brown sandy soil, stones, concrete, brick, clinker	No asbestos detected	n/t	n/t	n/t	n/t
213997 0.40	WS17 1	Brown sandy soil, stones, concrete, brick, clinker, glass	No asbestos detected	n/t	n/t	n/t	n/t
213999 0.35	WS18 1	Brown sandy soil, stones, concrete, brick, clinker, bone	No asbestos detected	n/t	n/t	n/t	n/t

Method Summary Report No.: 20-29855, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
Petrol range organics in soil	N	As submitted sample	17/09/2020		GC-MS
Sulphide	N	As submitted sample	18/09/2020	109	Colorimetry
Hexavalent chromium	N	As submitted sample	16/09/2020	110	Colorimetry
Acid Soluble Sulphate	U	Air dried sample	17/09/2020	115	Ion Chromatography
Phenols in solids	N	As submitted sample	16/09/2020	121	HPLC
Elemental Sulphur	M	Air dried sample	16/09/2020	122	HPLC
PAH (GC-FID)	M	As submitted sample	16/09/2020	133	GC-FID
Water soluble anions	M	Air dried sample	16/09/2020	172	Ion Chromatography
Low range Aliphatic hydrocarbons soil	N	As submitted sample	16/09/2020	181	GC-MS
Low range Aromatic hydrocarbons soil	N	As submitted sample	16/09/2020	181	GC-MS
Water soluble boron	N	Air dried sample	16/09/2020	202	Colorimetry
Total cyanide	М	As submitted sample	16/09/2020	204	Colorimetry
Basic carbon banding in soil	N	As submitted sample	16/09/2020	218	GC-FID
Diesel range organics in soil	N	As submitted sample	17/09/2020	257	GC-FID
TPH CWG soil by gc-gc	М	As submitted sample	15/09/2020	271	
Asbestos identification	U	Air dried sample	18/09/2020	280	Microscopy
Aqua regia extractable metals	М	Air dried sample	16/09/2020	300	ICPMS
Leachate					•
Arsenic	N		18/09/2020	301	ICPMS
Cadmium	N		18/09/2020	301	ICPMS
Chromium	N		18/09/2020	301	ICPMS
Lead	N		18/09/2020	301	ICPMS
Nickel	N		18/09/2020	301	ICPMS
Copper	N		18/09/2020	301	ICPMS
Zinc	N		18/09/2020	301	ICPMS
Mercury	N		18/09/2020	301	ICPMS
Selenium	N		18/09/2020	301	ICPMS
Antimony	N		18/09/2020	301	ICPMS
Barium	N		18/09/2020	301	ICPMS
Molybdenum	N		18/09/2020	301	ICPMS
pH Value	N		18/09/2020	113	Electrometric
Electrical Conductivity	N		18/09/2020	136	Probe
Dissolved Organic Carbon	N		18/09/2020	102	TOC analyser
Chloride	N		18/09/2020	131	Ion Chromatography
Fluoride	N		18/09/2020	131	Ion Chromatography
Sulphate	N		18/09/2020	131	Ion Chromatography
Total Dissolved Solids	N		18/09/2020	144	Gravimetric
Phenol index	N		18/09/2020	121	HPLC
WAC Solids analysis	N		. 5, 55, 2520	. = 1	20
pH Value	M	Air dried sample	16/09/2020	113	Electrometric
Total Organic Carbon	N	Air dried sample	17/09/2020	210	IR
Loss on Ignition	M	Air dried sample	18/09/2020	129	Gravimetric
Acid Neutralization Capacity to pH 7	N	Air dried sample	16/09/2020	NEN 737	Electrometric
Total BTEX	M	As submitted sample	16/09/2020	181	GCMS
Mineral Oil	M	As submitted sample As submitted sample	16/09/2020	117	GCFID
Total PCBs (7 congeners)	M	As submitted sample Air dried sample	17/09/2020	120	GCMS
HULAL E C.DS 17 CUNUCHEIS)	IVI	All uned Sample	11/03/2020	120	IGCINO

Tests marked N are not UKAS accredited

Report Information

Report No.: 20-29855, issue number 1

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.

Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.

ELAB are unable to provide an interpretation or opinion on the content of this report.

The results relate only to the sample received.

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618

cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 20-30001

Issue: 1

Date of Issue: 30/09/2020

Contact: Katie Brayne

Customer Details: GESL

Unit 7

Danworth Farm Hurstpierpoint

West SussexBN6 9GL

Quotation No: Q19-01488

Order No: 3040

Customer Reference: GE18530

Date Received: 21/09/2020

Date Approved: 30/09/2020

Details: Phase 1 Cambridge Road

Approved by:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 20-30001, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
214777	WS07 W 2.06	17/09/2020	23/09/2020		
214778	WS10 W 2.35	17/09/2020	23/09/2020		
214779	WS13 W 0.97	17/09/2020	23/09/2020		

Report No.: 20-30001, issue number 1

Report No.: 20-30001, Issue nui	mber i		1			
		ELAB	Reference	214777	214778	214779
	C	Customer	Reference	W	W	W
			Sample ID			
		Sa	mple Type	WATER	WATER	WATER
		Sampl	e Location	WS07	WS10	WS13
		Sample	Depth (m)	2.06	2.35	0.97
		•		17/09/2020	17/09/2020	17/09/2020
Determinand	Codes	Units	LOD			
Dissolved Metals						
Arsenic	U	ug/l	5	< 5	< 5	< 5
Boron	N	ug/l	5	426	414	199
Barium	U	ug/l	5	55	58	24
Beryllium	U	ug/l	5	< 5	< 5	< 5
Cadmium	U	ug/l	1	< 1	< 1	< 1
Chromium	U	ug/l	5	< 5	< 5	< 5
Copper	U	ug/l	5	< 5	6	< 5
Mercury	U	ug/l	0.1	< 0.1	< 0.1	< 0.1
Nickel	U	ug/l	5	13	9	42
Lead	U	ug/l	1	< 1	< 1	< 1
Selenium	U	ug/l	5	< 5	< 5	< 5
Vanadium	N	ug/l	5	< 5	< 5	< 5
Zinc	U	ug/l	5	< 5	18	9
Anions						
Chloride	U	mg/l	0.5	213	67.6	213
Sulphate	U	mg/l	0.5	411	263	473
Inorganics						
Elemental Sulphur	N	mg/l	0.1	< 0.1	< 0.1	< 0.1
Hexavalent Chromium	U	ug/l	100	< 100	< 100	< 100
Sulphide	N	mg/l	0.1	0.1	< 0.1	0.1
Miscellaneous						
Dissolved organic carbon	N	mg/l	1.5	5.1	9.2	8.1
рН	U	pH units	0.1	7.3	7.3	6.9
Phenois						
Phenol	N	ug/l	1	< 1	< 1	< 1
M,P-Cresol	N	ug/l	1	< 1	< 1	< 1
O-Cresol	N	ug/l	1	< 1	< 1	< 1
3,4-Dimethylphenol	N	ug/l	1	< 1	< 1	< 1
2,3-Dimethylphenol	N	ug/l	1	< 1	< 1	< 1
2,3,5-trimethylphenol	N	ug/l	1	< 1	< 1	< 1
Total Monohydric Phenols	N	ug/l	1	< 1	< 1	< 1

Report No.: 20-30001, issue number 1

iiuiiib e i i					
	ELAB	Reference	214777	214778	214779
C	Sustomer	Reference	W	W	W
		Sample ID			
	Sa	mple Type	WATER	WATER	WATER
	Sampl	e Location	WS07	WS10	WS13
	Sample	Depth (m)	2.06	2.35	0.97
		. , ,	17/09/2020	17/09/2020	17/09/2020
Codes					
	-				
	ua/l	0.01	n/t	n/t	0.06
					0.08
	_				0.05
					0.03
					0.52
					0.14
					1.46
					1.40
					0.71
	_				0.71
					0.72
					0.80
					0.80
					0.78
					0.44
	_				
					0.61
I IN	ug/i	0.01	TI/L	Π/L	8.68
					< 1.0
					< 1.0
					41.8
					32.8
	ug/l			n/t	17.2
	ug/l			n/t	17.7
	ug/l		n/t	n/t	134
					< 5.0
	ug/l		n/t	n/t	244
	ug/l		n/t	n/t	< 1.0
N	ug/l	1	n/t	n/t	< 1.0
N	ug/l	5	n/t	n/t	< 5.0
N	ug/l	5	n/t	n/t	< 5.0
N	ug/l	5	n/t	n/t	< 5.0
N	ug/l	5	n/t	n/t	10.4
N	ug/l	5	n/t	n/t	64.5
N	ug/l	5	n/t	n/t	< 5.0
N	ug/l	5	n/t	n/t	74.9
N	ug/l	5	n/t	n/t	319
	Codes N	ELAB Customer Sa Sample Sample Sample Sam Codes Units DIS N ug/l	ELAB Reference Customer Reference Sample ID Sample Type Sample Location Sampling Date Codes Units LOD	Customer Reference	ELAB Reference

Method Summary Report No.: 20-30001, issue number 1

Parameter	Codes	Analysis Undertaken	Date	Method	Technique
raiailietei	Codes	On	Tested	Number	recinique
Water					
Aliphatic/Aromatic hydrocarbons in water	N		30/09/2020		GC-FID
Aromatic hydrocarbons in water	N		30/09/2020		GC-FID
Phenols in waters	N		24/09/2020		HPLC
Dissolved organic carbon	N		25/09/2020	102	IR
pH of waters	U		24/09/2020	113	Electromeric
Chromium Hexavalent in waters	U		24/09/2020	123	Colorimetry
Sulphide in water	N		29/09/2020	134	Colorimetry
PAHs and/or PCBs in waters	N		29/09/2020	135	GC-MS
Low range Aliphatic hydrocarbons water	N		25/09/2020	200	GC-MS
Low range Aromatic hydrocarbons water	N		25/09/2020	200	GC-MS
Elemental Sulphur by HPLC in waters	N		25/09/2020	206	HPLC
Aliphatic hydrocarbons in water	N		29/09/2020	215	GC-FID
Aromatic hydrocarbons in water	N		29/09/2020	215	GC-FID
Anions	U		24/09/2020	270	Ion Chromatography
Dissolved metals by ICP in waters	U		24/09/2020	301	ICPMS

Tests marked N are not UKAS accredited

Report Information

Report No.: 20-30001, issue number 1

Key

U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.

Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.

ELAB are unable to provide an interpretation or opinion on the content of this report.

The results relate only to the sample received.

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report

Charges may apply to extended sample storage

APPENDIX C

Groundwater and Groundgas Monitoring

Project Details

Engineer Katie Brayne Lucy Holford Lucy.holford@gesl.net [] GFM 430 [X] GA2000 [X] Tiger 1 [] Tiger 2 [X] Dipmeter Stability Parameters for Water Sampling Required (DO, pH, Temp, Cond) Monitoring Results		
Project No. GE18530 Client Countryside Properties LLP Date 17/09/2020 Weather Clear and sunny. Monitoring Visit No. 1 Engineer Katie Brayne Katie Brayne Lucy Holford Lucy.holford@gesl.net [] GFM 430 [X] GA2000 [X] Tiger 1 [] Tiger 2 [X] Dipmeter Stability Parameters for Water Sampling Required (DO, pH, Temp, Cond) Monitoring Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Client Countryside Properties LLP Date 17/09/2020 Weather Clear and sunny. Monitoring Visit No. 1 Engineer Katie Brayne katie@gesl.net Lucy Holford lucy.holford@gesl.net [] GFM 430 [X] GA2000 [X] Tiger 1 [] Tiger 2 [X] Dipmeter Stability Parameters for Water Sampling Required (DO, pH, Temp, Cond) [] Yes [] No Monitoring Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Date 17/09/2020 Weather Clear and sunny. Monitoring Visit No. 1 Engineer Lucy Holford Lucy.holford@gesl.net Lucy Holford Lucy.holford@gesl.net [] GFM 430 [X] GA2000 [X] Tiger 1 [] Tiger 2 [X] Dipmeter Stability Parameters for Water Sampling Required (DO, pH, Temp, Cond) Monitoring Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Monitoring Visit No. Engineer Katie Brayne Lucy Holford Lucy.holford@gesl.net Lucy Holford Lucy.holford@gesl.net Lucy Holford Lucy.holford@gesl.net Lucy Holford Lucy.holford@gesl.net Lucy.holford@		
Engineer Katie Brayne Lucy Holford Lucy.holford@gesl.net Lucy Holford Lucy.holford@gesl.net [] GFM 430 [X] GA2000 [X] Tiger 1 [] Tiger 2 [X] Dipmeter Stability Parameters for Water Sampling Required (DO, pH, Temp, Cond) Monitoring Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Engineer Lucy Holford Lucy.holford@gesl.net [] GFM 430 [X] GA2000 Equipment Used [] Tiger 1 [] Tiger 2 [X] Dipmeter Stability Parameters for Water Sampling Required (DO, pH, Temp, Cond) Monitoring Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Lucy Holford Lucy Holford [] GFM 430 [X] GA2000 Equipment Used [X] Tiger 1 [] Tiger 2 [X] Dipmeter Stability Parameters for Water Sampling Required (DO, pH, Temp, Cond) Monitoring Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Lucy Holford Comparison Co		
[] GFM 430 [X] GA2000 Equipment Used		
Equipment Used [X] GA2000 [X] Tiger 1 [] Tiger 2 [X] Dipmeter Stability Parameters for Water Sampling Required (DO, pH, Temp, Cond) Monitoring Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Required (DO, pH, Temp, Cond) [] No Monitoring Results Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Results Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Exploratory Hole Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Atmospheric Pressure (mb) Steady Flow (I/hr) VOC (ppm)		
Steady Flow (I/hr) VOC (ppm)	WS01	
VOC (ppm)	1029	
	0.00	
Gas Concentrations	0.10	
Methane Carbon Oxygen CH4 CO2 CH4 CO.	CS Lim. CS Conc. CH4 GSV CH4	CO2 GSV CO2

Time (s)	(%)	dioxide (%)	(%)	GSV/Qhgs	GSV/Qhgs	(BS8485 & C665)	(BS8485 & C665)	Value Check	Check	(NHBC)	Conc. (NHBC)	(NHBC)	Conc. (NHBC)	
0	0.00	0.00	21.50	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
10	0.00	0.00	21.50	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
20	0.00	3.30	18.90	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
30	0.00	3.60	16.40	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
60	0.00	3.50	16.30	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
90	0.00	3.40	16.60	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
120	0.00	2.60	17.40	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
180	0.00	2.00	18.30	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
Water Leve	l (mbgl)		•	,	,	,		•	000		•		•	
Remarks														
Exploratory	Hole		WS0	7										
Atmospheri	c Pressure (ı	nb)	1029											
Steady Flov	v (l/hr)		0.10											
VOC (ppm)			0.20											
Gas Conce	ntrations													
Time (s)	Methane (%)	Carbon dioxide (%)	Oxygen (%)	CH4 GSV/Qhgs	CO2 GSV/Qhgs	CH4 (BS8485 & C665)	CO2 (BS8485 & C665)	CS Lim. Value Check	CS Conc. Check	CH4 GSV (NHBC)	CH4 Conc. (NHBC)	CO2 GSV (NHBC)	CO2 Conc. (NHBC)	
0	0.00	0.00	21.60	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
10	0.00	0.20	21.00	0.0	0.0002	CS1	CS1	Pass	Pass	Green	Green	Green	Green	
10 20	0.00									Green Green	Green Green	Green Green		
		0.20	21.00	0.0	0.0002	CS1	CS1	Pass	Pass				Green	
20	0.00	0.20	21.00	0.0	0.0002	CS1	CS1	Pass Pass	Pass Pass	Green	Green	Green	Green Green	
20 30	0.00	0.20 4.20 4.30	21.00 18.10 17.60	0.0 0.0 0.0	0.0002 0.0042 0.0043	CS1 CS1 CS1	CS1 CS1 CS1	Pass Pass Pass	Pass Pass Pass	Green Green	Green Green	Green Green	Green Green	

180	0.00	4.10	17.70	0.0	0.0041	CS1	CS1	Pass	Pass	Green	Green	Green	Green
Water Leve	l (mbgl)		2.0	6									
						1							(1 recor
Water Sam	oles		San	ple Reference	1	Depth		7	Time Taken		Samp	le Containers	
			WS)7		2.50		(09:09				
Remarks			Not	enough water	for 1Lt glass	bottle							
Exploratory	Hole		WS	10									
Atmospheri	c Pressure (r	nb)	102	9									
Steady Flov	v (l/hr)		0.0)									
VOC (ppm)			0.1)									
Gas Conce	ntrations			_					_			_	
Time (s)	Methane (%)	Carbon dioxide (%)	Oxygen (%)	CH4 GSV/Qhgs	CO2 GSV/Qhgs	CH4 (BS8485 & C665)	CO2 (BS8485 & C665)	CS Lim. Value Check	CS Conc. Check	CH4 GSV (NHBC)	CH4 Conc. (NHBC)	CO2 GSV (NHBC)	CO2 Conc. (NHBC)
0	0.0	0.0	21.7	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
10	0.0	0.6	21.4	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
20	0.0	7.2	16.3	0.0	0.0	CS1	CS1	Pass	CO2>CS1 Limit	Green	Green	Green	Amber 1
30	0.0	7.4	15.2	0.0	0.0	CS1	CS1	Pass	CO2>CS1 Limit	Green	Green	Green	Amber 1
60	0.0	7.4	15.0	0.0	0.0	CS1	CS1	Pass	CO2>CS1 Limit	Green	Green	Green	Amber 1
90	0.0	7.50	14.90	0.0	0.0	CS1	CS1	Pass	CO2>CS1 Limit	Green	Green	Green	Amber 1
120	0.0	7.5	15.0	0.0	0.0	CS1	CS1	Pass	CO2>CS1 Limit	Green	Green	Green	Amber 1
180	0.0	7.3	15.2	0.0	0.0	CS1	CS1	Pass	CO2>CS1 Limit	Green	Green	Green	Amber 1
Water Leve	l (mbgl)	•	2.3	5	•		,	•	,				,

Water Sam	ples			Sample Referenc	Depth			Time Taken		Samp	Sample Containers		
			Ţ	WS10		2.90	2.90		09:26				
Remarks Not enough water for 1Lt glass													
Exploratory Hole WS13													
Atmospheric Pressure (mb) 1029													
Steady Flow	v (l/hr)			0.0									
/OC (ppm)				1.60									
as Conce	ntrations												
Time (s)	Methane (%)	Carbon dioxide (%)	Oxyge (%)	en CH4 GSV/Qhgs	CO2 GSV/Qhgs	CH4 (BS8485 & C665)	CO2 (BS8485 & C665)	CS Lim Value Check	CS Conc. Check	CH4 GSV (NHBC)	CH4 Conc. (NHBC)	CO2 GSV (NHBC)	CO2 Conc. (NHBC
0	0.0	0.0	21.4	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
10	0.0	0.3	21.3	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
20	0.0	2.1	19.7	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
30	0.0	2.1	19.4	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
60	0.0	2.2	19.2	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
90	0	0	0	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
120	0	0	0	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
180	0	0	0	0.0	0.0	CS1	CS1	Pass	Pass	Green	Green	Green	Green
Vater Leve	l (mbgl)			0. 97									
			_										(1 re
Vater Sam	ples		3	Sample Referenc	e	Depth			Time Taken	Samp	le Containers		
			\	WS13		2.90			10:00				
Remarks				Gas monitor suc	ced water at 1	minute.							·····

APPENDIX D

CatWaste

Classification Assessment Tool of Soil Wastes - Hazard Summary Sheet

ATKINS CatWasteSoil

Site Name	Cambridge Road
Location	Kingston Upon Thames
Site ID	GE18530
Job Number	
Date	10/6/2020
User Name	katie.brayne@gesl.net
Company Name	Geo-Environmental Services Limited

Hole ID	Sample Depth	Hazardous Waste Y/N	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8	HP9
WS01	0.80	N	No								
WS02	0.15	N	No								
WS02a	0.50	Y	No								
WS03	0.60	N	No								
WS04	0.50	N	No								
WS05	0.60	N	No								
WS05	1.50	N	No								
WS06	0.15	N	No								
WS06	0.50	N	No								
WS07	0.50	N	No								
WS08	0.40	N	No								
WS08a	0.70	N	No								
WS08a	1.00	N	No								
WS09	0.20	Y	No								
WS09	1.00	N	No								
WS10	1.00	N	No								
WS11	0.60	N	No								
WS12	0.15	N	No								
WS13	0.70	N	No								
WS14	0.50	N	No								
WS15	0.70	N	No								
WS16	0.20	N	No								
WS16	0.50	Y	No								
WS17	0.40	Y	No								
WS18	0.35	N	No								

	Cambridge Road
Location	Kingston Upon Thames
Site ID	GE18530
Job Number	
Date	10/6/2020
User Name	katie.brayne@gesl.net
Company Name	Geo-Environmental Services Limited

Hole ID	Sample Depth	Hazardous Waste Y/N	HP10	HP11	HP12	HP13	HP14	HP15	HP16
WS01	0.80	N	No						
WS02	0.15	N	No						
WS02a	0.50	Υ	No	No	No	No	Yes	No	No
WS03	0.60	N	No						
WS04	0.50	N	No						
WS05	0.60	N	No						
WS05	1.50	N	No						
WS06	0.15	N	No						
WS06	0.50	N	No						
WS07	0.50	N	No						
WS08	0.40	N	No						
WS08a	0.70	N	No						
WS08a	1.00	N	No						
WS09	0.20	Υ	No	No	No	No	Yes	No	No
WS09	1.00	N	No						
WS10	1.00	N	No						
WS11	0.60	N	No						
WS12	0.15	N	No						
WS13	0.70	N	No						
WS14	0.50	N	No						
WS15	0.70	N	No						
WS16	0.20	N	No						
WS16	0.50	Y	No	No	No	No	Yes	No	No
WS17	0.40	Y	No	No	No	No	Yes	No	No
WS18	0.35	N	No						

The Design Team

ACD Environmental

Arboricultural consultant

Architecture in Perspective

Visualisation artist

AWA Consulting

MEP engineer

Base Models

Physical modelmaker

Barton Willmore

Planning consultant

Environmental Impact Assessment

Townscape Impact Assessment

Countryside Properties

Developer

CTP Consulting

Structural & Civil engineer

David Bonnett Associates

Access and Inclusive Design consultant

Ensafe

Air Quality consultants

GIA

Daylight / Sunlight / RoL consultant

Greengage Environmental

Ecology and biodiversity consultant

Hodkinson Consulting

Sustainability / Energy consultant

H+H Fire

Fire consultant

Markides

Transport consultant

Patel Taylor

Architect / Landscape Architect

Pipers

Physical modelmaker

Realm

Visualisation and verified views

Royal Borough of Kingston Upon Thames

Project Joint Venture partner

Soundings

Community engagement consultant

SRE

Wind and microclimate consultant

Terence O'Rourke

Archaeology and heritage consultant

ULL Property

Viability consultant

WYG

Noise and vibration

Cambridge Road Estate

48 Rawstorne Street London EC1V 7ND T +44 (0)20 7278 2323 pt@pateltaylor.co.uk www.pateltaylor.co.uk Pankaj Patel MBE Andrew Taylor

Patel Taylor Architects Ltd Registered in England and Wales Number 5096844